mirror of
https://github.com/bigchaindb/bigchaindb.git
synced 2024-10-13 13:34:05 +00:00
added little py script to do some nginx logs analysis
This commit is contained in:
parent
488074fa09
commit
8f6e7fc735
74
k8s/logging-and-monitoring/analyze.py
Normal file
74
k8s/logging-and-monitoring/analyze.py
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
"""
|
||||||
|
A little Python script to do some analysis of the NGINX logs.
|
||||||
|
To get the relevant NGINX logs:
|
||||||
|
1. Go to the OMS Portal
|
||||||
|
2. Create a new Log Search
|
||||||
|
3. Use a search string such as:
|
||||||
|
|
||||||
|
Type=ContainerLog Image="bigchaindb/nginx_3scale:1.3" GET NOT("Go-http-client") NOT(runscope)
|
||||||
|
|
||||||
|
(This gets all logs from the NGINX container, only those with the word "GET", excluding those with the string "Go-http-client" [internal Kubernetes traffic], excluding those with the string "runscope" [Runscope tests].)
|
||||||
|
|
||||||
|
4. In the left sidebar, at the top, use the dropdown menu to select the time range, e.g. "Data based on last 7 days". Pay attention to the number of results and the time series chart in the left sidebar. Are there any spikes?
|
||||||
|
5. Export the search results. A CSV file will be saved on your local machine.
|
||||||
|
6. $ python3 analyze.py logs.csv
|
||||||
|
|
||||||
|
Thanks to https://gist.github.com/hreeder/f1ffe1408d296ce0591d
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
import csv
|
||||||
|
import re
|
||||||
|
import datetime
|
||||||
|
from dateutil.parser import parse
|
||||||
|
|
||||||
|
|
||||||
|
lineformat = re.compile(r"""(?P<ipaddress>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) - - \[(?P<dateandtime>\d{2}\/[a-z]{3}\/\d{4}:\d{2}:\d{2}:\d{2} (\+|\-)\d{4})\] ((\"(GET|POST) )(?P<url>.+)(http\/1\.1")) (?P<statuscode>\d{3}) (?P<bytessent>\d+) (["](?P<refferer>(\-)|(.+))["]) (["](?P<useragent>.+)["])""", re.IGNORECASE)
|
||||||
|
|
||||||
|
filepath = sys.argv[1]
|
||||||
|
|
||||||
|
logline_list = []
|
||||||
|
with open(filepath) as csvfile:
|
||||||
|
csvreader = csv.reader(csvfile, delimiter=',')
|
||||||
|
for row in csvreader:
|
||||||
|
if row and (row[8] != 'LogEntry'):
|
||||||
|
# because the first line is just the column headers, such as 'LogEntry'
|
||||||
|
logline = row[8]
|
||||||
|
print(logline + '\n')
|
||||||
|
logline_data = re.search(lineformat, logline)
|
||||||
|
if logline_data:
|
||||||
|
logline_dict = logline_data.groupdict()
|
||||||
|
logline_list.append(logline_dict)
|
||||||
|
# so logline_list is a list of dicts
|
||||||
|
# print('{}'.format(logline_dict))
|
||||||
|
|
||||||
|
# Example logline:
|
||||||
|
|
||||||
|
# 95.91.211.240 - - [22/May/2017:13:23:21 +0000] "GET /api/v1/statuses?tx_id=2306f34f6a98f1754e1048e8a71cc6b2d01ff594b08f6def88e15931caaaca98 HTTP/1.1" 200 120 "-" "python-requests/2.13.0"
|
||||||
|
|
||||||
|
# Example logline_dict:
|
||||||
|
|
||||||
|
# {'statuscode': '200', 'url': '/api/v1/statuses?tx_id=2306f34f6a98f1754e1048e8a71cc6b2d01ff594b08f6def88e15931caaaca98 ', 'dateandtime': '22/May/2017:13:23:21 +0000', 'useragent': 'python-requests/2.13.0', 'refferer': '-', 'bytessent': '120', 'ipaddress': '95.91.211.240'}
|
||||||
|
|
||||||
|
# Analysis
|
||||||
|
|
||||||
|
total_bytes_sent = 0
|
||||||
|
tstamp_list = []
|
||||||
|
|
||||||
|
for lldict in logline_list:
|
||||||
|
total_bytes_sent += int(lldict['bytessent'])
|
||||||
|
dt = lldict['dateandtime']
|
||||||
|
# https://tinyurl.com/lqjnhot
|
||||||
|
dtime = parse(dt[:11] + " " + dt[12:])
|
||||||
|
tstamp_list.append(dtime.timestamp())
|
||||||
|
|
||||||
|
print('Number of log lines seen: {}'.format(len(logline_list)))
|
||||||
|
|
||||||
|
# Time range
|
||||||
|
trange_sec = max(tstamp_list) - min(tstamp_list)
|
||||||
|
trange_days = trange_sec / 60.0 / 60.0 / 24.0
|
||||||
|
print("Time range seen (days): {}".format(trange_days))
|
||||||
|
|
||||||
|
print("Total bytes sent: {}".format(total_bytes_sent))
|
||||||
|
|
||||||
|
print("Average bytes sent per day (out via GET): {}".format(total_bytes_sent / trange_days))
|
Loading…
x
Reference in New Issue
Block a user