server: Move server files to 'server' directory.

26  git mv mvcc wal auth etcdserver etcdmain proxy embed/ lease/ server
   36  git mv go.mod go.sum server
This commit is contained in:
Piotr Tabor
2020-10-20 23:05:17 +02:00
parent eee8dec0c3
commit 4a5e9d1261
316 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,572 @@
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"fmt"
"hash/crc32"
"io"
"io/ioutil"
"os"
"path/filepath"
"sync"
"sync/atomic"
"time"
humanize "github.com/dustin/go-humanize"
bolt "go.etcd.io/bbolt"
"go.uber.org/zap"
)
var (
defaultBatchLimit = 10000
defaultBatchInterval = 100 * time.Millisecond
defragLimit = 10000
// initialMmapSize is the initial size of the mmapped region. Setting this larger than
// the potential max db size can prevent writer from blocking reader.
// This only works for linux.
initialMmapSize = uint64(10 * 1024 * 1024 * 1024)
// minSnapshotWarningTimeout is the minimum threshold to trigger a long running snapshot warning.
minSnapshotWarningTimeout = 30 * time.Second
)
type Backend interface {
// ReadTx returns a read transaction. It is replaced by ConcurrentReadTx in the main data path, see #10523.
ReadTx() ReadTx
BatchTx() BatchTx
// ConcurrentReadTx returns a non-blocking read transaction.
ConcurrentReadTx() ReadTx
Snapshot() Snapshot
Hash(ignores map[IgnoreKey]struct{}) (uint32, error)
// Size returns the current size of the backend physically allocated.
// The backend can hold DB space that is not utilized at the moment,
// since it can conduct pre-allocation or spare unused space for recycling.
// Use SizeInUse() instead for the actual DB size.
Size() int64
// SizeInUse returns the current size of the backend logically in use.
// Since the backend can manage free space in a non-byte unit such as
// number of pages, the returned value can be not exactly accurate in bytes.
SizeInUse() int64
// OpenReadTxN returns the number of currently open read transactions in the backend.
OpenReadTxN() int64
Defrag() error
ForceCommit()
Close() error
}
type Snapshot interface {
// Size gets the size of the snapshot.
Size() int64
// WriteTo writes the snapshot into the given writer.
WriteTo(w io.Writer) (n int64, err error)
// Close closes the snapshot.
Close() error
}
type backend struct {
// size and commits are used with atomic operations so they must be
// 64-bit aligned, otherwise 32-bit tests will crash
// size is the number of bytes allocated in the backend
size int64
// sizeInUse is the number of bytes actually used in the backend
sizeInUse int64
// commits counts number of commits since start
commits int64
// openReadTxN is the number of currently open read transactions in the backend
openReadTxN int64
mu sync.RWMutex
db *bolt.DB
batchInterval time.Duration
batchLimit int
batchTx *batchTxBuffered
readTx *readTx
stopc chan struct{}
donec chan struct{}
lg *zap.Logger
}
type BackendConfig struct {
// Path is the file path to the backend file.
Path string
// BatchInterval is the maximum time before flushing the BatchTx.
BatchInterval time.Duration
// BatchLimit is the maximum puts before flushing the BatchTx.
BatchLimit int
// BackendFreelistType is the backend boltdb's freelist type.
BackendFreelistType bolt.FreelistType
// MmapSize is the number of bytes to mmap for the backend.
MmapSize uint64
// Logger logs backend-side operations.
Logger *zap.Logger
// UnsafeNoFsync disables all uses of fsync.
UnsafeNoFsync bool `json:"unsafe-no-fsync"`
}
func DefaultBackendConfig() BackendConfig {
return BackendConfig{
BatchInterval: defaultBatchInterval,
BatchLimit: defaultBatchLimit,
MmapSize: initialMmapSize,
}
}
func New(bcfg BackendConfig) Backend {
return newBackend(bcfg)
}
func NewDefaultBackend(path string) Backend {
bcfg := DefaultBackendConfig()
bcfg.Path = path
return newBackend(bcfg)
}
func newBackend(bcfg BackendConfig) *backend {
if bcfg.Logger == nil {
bcfg.Logger = zap.NewNop()
}
bopts := &bolt.Options{}
if boltOpenOptions != nil {
*bopts = *boltOpenOptions
}
bopts.InitialMmapSize = bcfg.mmapSize()
bopts.FreelistType = bcfg.BackendFreelistType
bopts.NoSync = bcfg.UnsafeNoFsync
bopts.NoGrowSync = bcfg.UnsafeNoFsync
db, err := bolt.Open(bcfg.Path, 0600, bopts)
if err != nil {
bcfg.Logger.Panic("failed to open database", zap.String("path", bcfg.Path), zap.Error(err))
}
// In future, may want to make buffering optional for low-concurrency systems
// or dynamically swap between buffered/non-buffered depending on workload.
b := &backend{
db: db,
batchInterval: bcfg.BatchInterval,
batchLimit: bcfg.BatchLimit,
readTx: &readTx{
baseReadTx: baseReadTx{
buf: txReadBuffer{
txBuffer: txBuffer{make(map[string]*bucketBuffer)},
},
buckets: make(map[string]*bolt.Bucket),
txWg: new(sync.WaitGroup),
txMu: new(sync.RWMutex),
},
},
stopc: make(chan struct{}),
donec: make(chan struct{}),
lg: bcfg.Logger,
}
b.batchTx = newBatchTxBuffered(b)
go b.run()
return b
}
// BatchTx returns the current batch tx in coalescer. The tx can be used for read and
// write operations. The write result can be retrieved within the same tx immediately.
// The write result is isolated with other txs until the current one get committed.
func (b *backend) BatchTx() BatchTx {
return b.batchTx
}
func (b *backend) ReadTx() ReadTx { return b.readTx }
// ConcurrentReadTx creates and returns a new ReadTx, which:
// A) creates and keeps a copy of backend.readTx.txReadBuffer,
// B) references the boltdb read Tx (and its bucket cache) of current batch interval.
func (b *backend) ConcurrentReadTx() ReadTx {
b.readTx.RLock()
defer b.readTx.RUnlock()
// prevent boltdb read Tx from been rolled back until store read Tx is done. Needs to be called when holding readTx.RLock().
b.readTx.txWg.Add(1)
// TODO: might want to copy the read buffer lazily - create copy when A) end of a write transaction B) end of a batch interval.
return &concurrentReadTx{
baseReadTx: baseReadTx{
buf: b.readTx.buf.unsafeCopy(),
txMu: b.readTx.txMu,
tx: b.readTx.tx,
buckets: b.readTx.buckets,
txWg: b.readTx.txWg,
},
}
}
// ForceCommit forces the current batching tx to commit.
func (b *backend) ForceCommit() {
b.batchTx.Commit()
}
func (b *backend) Snapshot() Snapshot {
b.batchTx.Commit()
b.mu.RLock()
defer b.mu.RUnlock()
tx, err := b.db.Begin(false)
if err != nil {
b.lg.Fatal("failed to begin tx", zap.Error(err))
}
stopc, donec := make(chan struct{}), make(chan struct{})
dbBytes := tx.Size()
go func() {
defer close(donec)
// sendRateBytes is based on transferring snapshot data over a 1 gigabit/s connection
// assuming a min tcp throughput of 100MB/s.
var sendRateBytes int64 = 100 * 1024 * 1024
warningTimeout := time.Duration(int64((float64(dbBytes) / float64(sendRateBytes)) * float64(time.Second)))
if warningTimeout < minSnapshotWarningTimeout {
warningTimeout = minSnapshotWarningTimeout
}
start := time.Now()
ticker := time.NewTicker(warningTimeout)
defer ticker.Stop()
for {
select {
case <-ticker.C:
b.lg.Warn(
"snapshotting taking too long to transfer",
zap.Duration("taking", time.Since(start)),
zap.Int64("bytes", dbBytes),
zap.String("size", humanize.Bytes(uint64(dbBytes))),
)
case <-stopc:
snapshotTransferSec.Observe(time.Since(start).Seconds())
return
}
}
}()
return &snapshot{tx, stopc, donec}
}
type IgnoreKey struct {
Bucket string
Key string
}
func (b *backend) Hash(ignores map[IgnoreKey]struct{}) (uint32, error) {
h := crc32.New(crc32.MakeTable(crc32.Castagnoli))
b.mu.RLock()
defer b.mu.RUnlock()
err := b.db.View(func(tx *bolt.Tx) error {
c := tx.Cursor()
for next, _ := c.First(); next != nil; next, _ = c.Next() {
b := tx.Bucket(next)
if b == nil {
return fmt.Errorf("cannot get hash of bucket %s", string(next))
}
h.Write(next)
b.ForEach(func(k, v []byte) error {
bk := IgnoreKey{Bucket: string(next), Key: string(k)}
if _, ok := ignores[bk]; !ok {
h.Write(k)
h.Write(v)
}
return nil
})
}
return nil
})
if err != nil {
return 0, err
}
return h.Sum32(), nil
}
func (b *backend) Size() int64 {
return atomic.LoadInt64(&b.size)
}
func (b *backend) SizeInUse() int64 {
return atomic.LoadInt64(&b.sizeInUse)
}
func (b *backend) run() {
defer close(b.donec)
t := time.NewTimer(b.batchInterval)
defer t.Stop()
for {
select {
case <-t.C:
case <-b.stopc:
b.batchTx.CommitAndStop()
return
}
if b.batchTx.safePending() != 0 {
b.batchTx.Commit()
}
t.Reset(b.batchInterval)
}
}
func (b *backend) Close() error {
close(b.stopc)
<-b.donec
return b.db.Close()
}
// Commits returns total number of commits since start
func (b *backend) Commits() int64 {
return atomic.LoadInt64(&b.commits)
}
func (b *backend) Defrag() error {
return b.defrag()
}
func (b *backend) defrag() error {
now := time.Now()
// TODO: make this non-blocking?
// lock batchTx to ensure nobody is using previous tx, and then
// close previous ongoing tx.
b.batchTx.Lock()
defer b.batchTx.Unlock()
// lock database after lock tx to avoid deadlock.
b.mu.Lock()
defer b.mu.Unlock()
// block concurrent read requests while resetting tx
b.readTx.Lock()
defer b.readTx.Unlock()
b.batchTx.unsafeCommit(true)
b.batchTx.tx = nil
// Create a temporary file to ensure we start with a clean slate.
// Snapshotter.cleanupSnapdir cleans up any of these that are found during startup.
dir := filepath.Dir(b.db.Path())
temp, err := ioutil.TempFile(dir, "db.tmp.*")
if err != nil {
return err
}
options := bolt.Options{}
if boltOpenOptions != nil {
options = *boltOpenOptions
}
options.OpenFile = func(path string, i int, mode os.FileMode) (file *os.File, err error) {
return temp, nil
}
tdbp := temp.Name()
tmpdb, err := bolt.Open(tdbp, 0600, &options)
if err != nil {
return err
}
dbp := b.db.Path()
size1, sizeInUse1 := b.Size(), b.SizeInUse()
if b.lg != nil {
b.lg.Info(
"defragmenting",
zap.String("path", dbp),
zap.Int64("current-db-size-bytes", size1),
zap.String("current-db-size", humanize.Bytes(uint64(size1))),
zap.Int64("current-db-size-in-use-bytes", sizeInUse1),
zap.String("current-db-size-in-use", humanize.Bytes(uint64(sizeInUse1))),
)
}
// gofail: var defragBeforeCopy struct{}
err = defragdb(b.db, tmpdb, defragLimit)
if err != nil {
tmpdb.Close()
if rmErr := os.RemoveAll(tmpdb.Path()); rmErr != nil {
b.lg.Error("failed to remove db.tmp after defragmentation completed", zap.Error(rmErr))
}
return err
}
err = b.db.Close()
if err != nil {
b.lg.Fatal("failed to close database", zap.Error(err))
}
err = tmpdb.Close()
if err != nil {
b.lg.Fatal("failed to close tmp database", zap.Error(err))
}
// gofail: var defragBeforeRename struct{}
err = os.Rename(tdbp, dbp)
if err != nil {
b.lg.Fatal("failed to rename tmp database", zap.Error(err))
}
b.db, err = bolt.Open(dbp, 0600, boltOpenOptions)
if err != nil {
b.lg.Fatal("failed to open database", zap.String("path", dbp), zap.Error(err))
}
b.batchTx.tx = b.unsafeBegin(true)
b.readTx.reset()
b.readTx.tx = b.unsafeBegin(false)
size := b.readTx.tx.Size()
db := b.readTx.tx.DB()
atomic.StoreInt64(&b.size, size)
atomic.StoreInt64(&b.sizeInUse, size-(int64(db.Stats().FreePageN)*int64(db.Info().PageSize)))
took := time.Since(now)
defragSec.Observe(took.Seconds())
size2, sizeInUse2 := b.Size(), b.SizeInUse()
if b.lg != nil {
b.lg.Info(
"defragmented",
zap.String("path", dbp),
zap.Int64("current-db-size-bytes-diff", size2-size1),
zap.Int64("current-db-size-bytes", size2),
zap.String("current-db-size", humanize.Bytes(uint64(size2))),
zap.Int64("current-db-size-in-use-bytes-diff", sizeInUse2-sizeInUse1),
zap.Int64("current-db-size-in-use-bytes", sizeInUse2),
zap.String("current-db-size-in-use", humanize.Bytes(uint64(sizeInUse2))),
zap.Duration("took", took),
)
}
return nil
}
func defragdb(odb, tmpdb *bolt.DB, limit int) error {
// open a tx on tmpdb for writes
tmptx, err := tmpdb.Begin(true)
if err != nil {
return err
}
defer func() {
if err != nil {
tmptx.Rollback()
}
}()
// open a tx on old db for read
tx, err := odb.Begin(false)
if err != nil {
return err
}
defer tx.Rollback()
c := tx.Cursor()
count := 0
for next, _ := c.First(); next != nil; next, _ = c.Next() {
b := tx.Bucket(next)
if b == nil {
return fmt.Errorf("backend: cannot defrag bucket %s", string(next))
}
tmpb, berr := tmptx.CreateBucketIfNotExists(next)
if berr != nil {
return berr
}
tmpb.FillPercent = 0.9 // for seq write in for each
if err = b.ForEach(func(k, v []byte) error {
count++
if count > limit {
err = tmptx.Commit()
if err != nil {
return err
}
tmptx, err = tmpdb.Begin(true)
if err != nil {
return err
}
tmpb = tmptx.Bucket(next)
tmpb.FillPercent = 0.9 // for seq write in for each
count = 0
}
return tmpb.Put(k, v)
}); err != nil {
return err
}
}
return tmptx.Commit()
}
func (b *backend) begin(write bool) *bolt.Tx {
b.mu.RLock()
tx := b.unsafeBegin(write)
b.mu.RUnlock()
size := tx.Size()
db := tx.DB()
stats := db.Stats()
atomic.StoreInt64(&b.size, size)
atomic.StoreInt64(&b.sizeInUse, size-(int64(stats.FreePageN)*int64(db.Info().PageSize)))
atomic.StoreInt64(&b.openReadTxN, int64(stats.OpenTxN))
return tx
}
func (b *backend) unsafeBegin(write bool) *bolt.Tx {
tx, err := b.db.Begin(write)
if err != nil {
b.lg.Fatal("failed to begin tx", zap.Error(err))
}
return tx
}
func (b *backend) OpenReadTxN() int64 {
return atomic.LoadInt64(&b.openReadTxN)
}
// NewTmpBackend creates a backend implementation for testing.
func NewTmpBackend(batchInterval time.Duration, batchLimit int) (*backend, string) {
dir, err := ioutil.TempDir(os.TempDir(), "etcd_backend_test")
if err != nil {
panic(err)
}
tmpPath := filepath.Join(dir, "database")
bcfg := DefaultBackendConfig()
bcfg.Path, bcfg.BatchInterval, bcfg.BatchLimit = tmpPath, batchInterval, batchLimit
return newBackend(bcfg), tmpPath
}
func NewDefaultTmpBackend() (*backend, string) {
return NewTmpBackend(defaultBatchInterval, defaultBatchLimit)
}
type snapshot struct {
*bolt.Tx
stopc chan struct{}
donec chan struct{}
}
func (s *snapshot) Close() error {
close(s.stopc)
<-s.donec
return s.Tx.Rollback()
}

View File

@@ -0,0 +1,50 @@
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"crypto/rand"
"os"
"testing"
"time"
)
func BenchmarkBackendPut(b *testing.B) {
backend, tmppath := NewTmpBackend(100*time.Millisecond, 10000)
defer backend.Close()
defer os.Remove(tmppath)
// prepare keys
keys := make([][]byte, b.N)
for i := 0; i < b.N; i++ {
keys[i] = make([]byte, 64)
rand.Read(keys[i])
}
value := make([]byte, 128)
rand.Read(value)
batchTx := backend.BatchTx()
batchTx.Lock()
batchTx.UnsafeCreateBucket([]byte("test"))
batchTx.Unlock()
b.ResetTimer()
for i := 0; i < b.N; i++ {
batchTx.Lock()
batchTx.UnsafePut([]byte("test"), keys[i], value)
batchTx.Unlock()
}
}

View File

@@ -0,0 +1,335 @@
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"fmt"
"io/ioutil"
"os"
"reflect"
"testing"
"time"
bolt "go.etcd.io/bbolt"
)
func TestBackendClose(t *testing.T) {
b, tmpPath := NewTmpBackend(time.Hour, 10000)
defer os.Remove(tmpPath)
// check close could work
done := make(chan struct{})
go func() {
err := b.Close()
if err != nil {
t.Errorf("close error = %v, want nil", err)
}
done <- struct{}{}
}()
select {
case <-done:
case <-time.After(10 * time.Second):
t.Errorf("failed to close database in 10s")
}
}
func TestBackendSnapshot(t *testing.T) {
b, tmpPath := NewTmpBackend(time.Hour, 10000)
defer cleanup(b, tmpPath)
tx := b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket([]byte("test"))
tx.UnsafePut([]byte("test"), []byte("foo"), []byte("bar"))
tx.Unlock()
b.ForceCommit()
// write snapshot to a new file
f, err := ioutil.TempFile(os.TempDir(), "etcd_backend_test")
if err != nil {
t.Fatal(err)
}
snap := b.Snapshot()
defer snap.Close()
if _, err := snap.WriteTo(f); err != nil {
t.Fatal(err)
}
f.Close()
// bootstrap new backend from the snapshot
bcfg := DefaultBackendConfig()
bcfg.Path, bcfg.BatchInterval, bcfg.BatchLimit = f.Name(), time.Hour, 10000
nb := New(bcfg)
defer cleanup(nb, f.Name())
newTx := nb.BatchTx()
newTx.Lock()
ks, _ := newTx.UnsafeRange([]byte("test"), []byte("foo"), []byte("goo"), 0)
if len(ks) != 1 {
t.Errorf("len(kvs) = %d, want 1", len(ks))
}
newTx.Unlock()
}
func TestBackendBatchIntervalCommit(t *testing.T) {
// start backend with super short batch interval so
// we do not need to wait long before commit to happen.
b, tmpPath := NewTmpBackend(time.Nanosecond, 10000)
defer cleanup(b, tmpPath)
pc := b.Commits()
tx := b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket([]byte("test"))
tx.UnsafePut([]byte("test"), []byte("foo"), []byte("bar"))
tx.Unlock()
for i := 0; i < 10; i++ {
if b.Commits() >= pc+1 {
break
}
time.Sleep(time.Duration(i*100) * time.Millisecond)
}
// check whether put happens via db view
b.db.View(func(tx *bolt.Tx) error {
bucket := tx.Bucket([]byte("test"))
if bucket == nil {
t.Errorf("bucket test does not exit")
return nil
}
v := bucket.Get([]byte("foo"))
if v == nil {
t.Errorf("foo key failed to written in backend")
}
return nil
})
}
func TestBackendDefrag(t *testing.T) {
b, tmpPath := NewDefaultTmpBackend()
defer cleanup(b, tmpPath)
tx := b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket([]byte("test"))
for i := 0; i < defragLimit+100; i++ {
tx.UnsafePut([]byte("test"), []byte(fmt.Sprintf("foo_%d", i)), []byte("bar"))
}
tx.Unlock()
b.ForceCommit()
// remove some keys to ensure the disk space will be reclaimed after defrag
tx = b.BatchTx()
tx.Lock()
for i := 0; i < 50; i++ {
tx.UnsafeDelete([]byte("test"), []byte(fmt.Sprintf("foo_%d", i)))
}
tx.Unlock()
b.ForceCommit()
size := b.Size()
// shrink and check hash
oh, err := b.Hash(nil)
if err != nil {
t.Fatal(err)
}
err = b.Defrag()
if err != nil {
t.Fatal(err)
}
nh, err := b.Hash(nil)
if err != nil {
t.Fatal(err)
}
if oh != nh {
t.Errorf("hash = %v, want %v", nh, oh)
}
nsize := b.Size()
if nsize >= size {
t.Errorf("new size = %v, want < %d", nsize, size)
}
// try put more keys after shrink.
tx = b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket([]byte("test"))
tx.UnsafePut([]byte("test"), []byte("more"), []byte("bar"))
tx.Unlock()
b.ForceCommit()
}
// TestBackendWriteback ensures writes are stored to the read txn on write txn unlock.
func TestBackendWriteback(t *testing.T) {
b, tmpPath := NewDefaultTmpBackend()
defer cleanup(b, tmpPath)
tx := b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket([]byte("key"))
tx.UnsafePut([]byte("key"), []byte("abc"), []byte("bar"))
tx.UnsafePut([]byte("key"), []byte("def"), []byte("baz"))
tx.UnsafePut([]byte("key"), []byte("overwrite"), []byte("1"))
tx.Unlock()
// overwrites should be propagated too
tx.Lock()
tx.UnsafePut([]byte("key"), []byte("overwrite"), []byte("2"))
tx.Unlock()
keys := []struct {
key []byte
end []byte
limit int64
wkey [][]byte
wval [][]byte
}{
{
key: []byte("abc"),
end: nil,
wkey: [][]byte{[]byte("abc")},
wval: [][]byte{[]byte("bar")},
},
{
key: []byte("abc"),
end: []byte("def"),
wkey: [][]byte{[]byte("abc")},
wval: [][]byte{[]byte("bar")},
},
{
key: []byte("abc"),
end: []byte("deg"),
wkey: [][]byte{[]byte("abc"), []byte("def")},
wval: [][]byte{[]byte("bar"), []byte("baz")},
},
{
key: []byte("abc"),
end: []byte("\xff"),
limit: 1,
wkey: [][]byte{[]byte("abc")},
wval: [][]byte{[]byte("bar")},
},
{
key: []byte("abc"),
end: []byte("\xff"),
wkey: [][]byte{[]byte("abc"), []byte("def"), []byte("overwrite")},
wval: [][]byte{[]byte("bar"), []byte("baz"), []byte("2")},
},
}
rtx := b.ReadTx()
for i, tt := range keys {
rtx.RLock()
k, v := rtx.UnsafeRange([]byte("key"), tt.key, tt.end, tt.limit)
rtx.RUnlock()
if !reflect.DeepEqual(tt.wkey, k) || !reflect.DeepEqual(tt.wval, v) {
t.Errorf("#%d: want k=%+v, v=%+v; got k=%+v, v=%+v", i, tt.wkey, tt.wval, k, v)
}
}
}
// TestConcurrentReadTx ensures that current read transaction can see all prior writes stored in read buffer
func TestConcurrentReadTx(t *testing.T) {
b, tmpPath := NewTmpBackend(time.Hour, 10000)
defer cleanup(b, tmpPath)
wtx1 := b.BatchTx()
wtx1.Lock()
wtx1.UnsafeCreateBucket([]byte("key"))
wtx1.UnsafePut([]byte("key"), []byte("abc"), []byte("ABC"))
wtx1.UnsafePut([]byte("key"), []byte("overwrite"), []byte("1"))
wtx1.Unlock()
wtx2 := b.BatchTx()
wtx2.Lock()
wtx2.UnsafePut([]byte("key"), []byte("def"), []byte("DEF"))
wtx2.UnsafePut([]byte("key"), []byte("overwrite"), []byte("2"))
wtx2.Unlock()
rtx := b.ConcurrentReadTx()
rtx.RLock() // no-op
k, v := rtx.UnsafeRange([]byte("key"), []byte("abc"), []byte("\xff"), 0)
rtx.RUnlock()
wKey := [][]byte{[]byte("abc"), []byte("def"), []byte("overwrite")}
wVal := [][]byte{[]byte("ABC"), []byte("DEF"), []byte("2")}
if !reflect.DeepEqual(wKey, k) || !reflect.DeepEqual(wVal, v) {
t.Errorf("want k=%+v, v=%+v; got k=%+v, v=%+v", wKey, wVal, k, v)
}
}
// TestBackendWritebackForEach checks that partially written / buffered
// data is visited in the same order as fully committed data.
func TestBackendWritebackForEach(t *testing.T) {
b, tmpPath := NewTmpBackend(time.Hour, 10000)
defer cleanup(b, tmpPath)
tx := b.BatchTx()
tx.Lock()
tx.UnsafeCreateBucket([]byte("key"))
for i := 0; i < 5; i++ {
k := []byte(fmt.Sprintf("%04d", i))
tx.UnsafePut([]byte("key"), k, []byte("bar"))
}
tx.Unlock()
// writeback
b.ForceCommit()
tx.Lock()
tx.UnsafeCreateBucket([]byte("key"))
for i := 5; i < 20; i++ {
k := []byte(fmt.Sprintf("%04d", i))
tx.UnsafePut([]byte("key"), k, []byte("bar"))
}
tx.Unlock()
seq := ""
getSeq := func(k, v []byte) error {
seq += string(k)
return nil
}
rtx := b.ReadTx()
rtx.RLock()
rtx.UnsafeForEach([]byte("key"), getSeq)
rtx.RUnlock()
partialSeq := seq
seq = ""
b.ForceCommit()
tx.Lock()
tx.UnsafeForEach([]byte("key"), getSeq)
tx.Unlock()
if seq != partialSeq {
t.Fatalf("expected %q, got %q", seq, partialSeq)
}
}
func cleanup(b Backend, path string) {
b.Close()
os.Remove(path)
}

View File

@@ -0,0 +1,307 @@
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"bytes"
"math"
"sync"
"sync/atomic"
"time"
bolt "go.etcd.io/bbolt"
"go.uber.org/zap"
)
type BatchTx interface {
ReadTx
UnsafeCreateBucket(name []byte)
UnsafePut(bucketName []byte, key []byte, value []byte)
UnsafeSeqPut(bucketName []byte, key []byte, value []byte)
UnsafeDelete(bucketName []byte, key []byte)
// Commit commits a previous tx and begins a new writable one.
Commit()
// CommitAndStop commits the previous tx and does not create a new one.
CommitAndStop()
}
type batchTx struct {
sync.Mutex
tx *bolt.Tx
backend *backend
pending int
}
func (t *batchTx) Lock() {
t.Mutex.Lock()
}
func (t *batchTx) Unlock() {
if t.pending >= t.backend.batchLimit {
t.commit(false)
}
t.Mutex.Unlock()
}
// BatchTx interface embeds ReadTx interface. But RLock() and RUnlock() do not
// have appropriate semantics in BatchTx interface. Therefore should not be called.
// TODO: might want to decouple ReadTx and BatchTx
func (t *batchTx) RLock() {
panic("unexpected RLock")
}
func (t *batchTx) RUnlock() {
panic("unexpected RUnlock")
}
func (t *batchTx) UnsafeCreateBucket(name []byte) {
_, err := t.tx.CreateBucket(name)
if err != nil && err != bolt.ErrBucketExists {
t.backend.lg.Fatal(
"failed to create a bucket",
zap.String("bucket-name", string(name)),
zap.Error(err),
)
}
t.pending++
}
// UnsafePut must be called holding the lock on the tx.
func (t *batchTx) UnsafePut(bucketName []byte, key []byte, value []byte) {
t.unsafePut(bucketName, key, value, false)
}
// UnsafeSeqPut must be called holding the lock on the tx.
func (t *batchTx) UnsafeSeqPut(bucketName []byte, key []byte, value []byte) {
t.unsafePut(bucketName, key, value, true)
}
func (t *batchTx) unsafePut(bucketName []byte, key []byte, value []byte, seq bool) {
bucket := t.tx.Bucket(bucketName)
if bucket == nil {
t.backend.lg.Fatal(
"failed to find a bucket",
zap.String("bucket-name", string(bucketName)),
)
}
if seq {
// it is useful to increase fill percent when the workloads are mostly append-only.
// this can delay the page split and reduce space usage.
bucket.FillPercent = 0.9
}
if err := bucket.Put(key, value); err != nil {
t.backend.lg.Fatal(
"failed to write to a bucket",
zap.String("bucket-name", string(bucketName)),
zap.Error(err),
)
}
t.pending++
}
// UnsafeRange must be called holding the lock on the tx.
func (t *batchTx) UnsafeRange(bucketName, key, endKey []byte, limit int64) ([][]byte, [][]byte) {
bucket := t.tx.Bucket(bucketName)
if bucket == nil {
t.backend.lg.Fatal(
"failed to find a bucket",
zap.String("bucket-name", string(bucketName)),
)
}
return unsafeRange(bucket.Cursor(), key, endKey, limit)
}
func unsafeRange(c *bolt.Cursor, key, endKey []byte, limit int64) (keys [][]byte, vs [][]byte) {
if limit <= 0 {
limit = math.MaxInt64
}
var isMatch func(b []byte) bool
if len(endKey) > 0 {
isMatch = func(b []byte) bool { return bytes.Compare(b, endKey) < 0 }
} else {
isMatch = func(b []byte) bool { return bytes.Equal(b, key) }
limit = 1
}
for ck, cv := c.Seek(key); ck != nil && isMatch(ck); ck, cv = c.Next() {
vs = append(vs, cv)
keys = append(keys, ck)
if limit == int64(len(keys)) {
break
}
}
return keys, vs
}
// UnsafeDelete must be called holding the lock on the tx.
func (t *batchTx) UnsafeDelete(bucketName []byte, key []byte) {
bucket := t.tx.Bucket(bucketName)
if bucket == nil {
t.backend.lg.Fatal(
"failed to find a bucket",
zap.String("bucket-name", string(bucketName)),
)
}
err := bucket.Delete(key)
if err != nil {
t.backend.lg.Fatal(
"failed to delete a key",
zap.String("bucket-name", string(bucketName)),
zap.Error(err),
)
}
t.pending++
}
// UnsafeForEach must be called holding the lock on the tx.
func (t *batchTx) UnsafeForEach(bucketName []byte, visitor func(k, v []byte) error) error {
return unsafeForEach(t.tx, bucketName, visitor)
}
func unsafeForEach(tx *bolt.Tx, bucket []byte, visitor func(k, v []byte) error) error {
if b := tx.Bucket(bucket); b != nil {
return b.ForEach(visitor)
}
return nil
}
// Commit commits a previous tx and begins a new writable one.
func (t *batchTx) Commit() {
t.Lock()
t.commit(false)
t.Unlock()
}
// CommitAndStop commits the previous tx and does not create a new one.
func (t *batchTx) CommitAndStop() {
t.Lock()
t.commit(true)
t.Unlock()
}
func (t *batchTx) safePending() int {
t.Mutex.Lock()
defer t.Mutex.Unlock()
return t.pending
}
func (t *batchTx) commit(stop bool) {
// commit the last tx
if t.tx != nil {
if t.pending == 0 && !stop {
return
}
start := time.Now()
// gofail: var beforeCommit struct{}
err := t.tx.Commit()
// gofail: var afterCommit struct{}
rebalanceSec.Observe(t.tx.Stats().RebalanceTime.Seconds())
spillSec.Observe(t.tx.Stats().SpillTime.Seconds())
writeSec.Observe(t.tx.Stats().WriteTime.Seconds())
commitSec.Observe(time.Since(start).Seconds())
atomic.AddInt64(&t.backend.commits, 1)
t.pending = 0
if err != nil {
t.backend.lg.Fatal("failed to commit tx", zap.Error(err))
}
}
if !stop {
t.tx = t.backend.begin(true)
}
}
type batchTxBuffered struct {
batchTx
buf txWriteBuffer
}
func newBatchTxBuffered(backend *backend) *batchTxBuffered {
tx := &batchTxBuffered{
batchTx: batchTx{backend: backend},
buf: txWriteBuffer{
txBuffer: txBuffer{make(map[string]*bucketBuffer)},
seq: true,
},
}
tx.Commit()
return tx
}
func (t *batchTxBuffered) Unlock() {
if t.pending != 0 {
t.backend.readTx.Lock() // blocks txReadBuffer for writing.
t.buf.writeback(&t.backend.readTx.buf)
t.backend.readTx.Unlock()
if t.pending >= t.backend.batchLimit {
t.commit(false)
}
}
t.batchTx.Unlock()
}
func (t *batchTxBuffered) Commit() {
t.Lock()
t.commit(false)
t.Unlock()
}
func (t *batchTxBuffered) CommitAndStop() {
t.Lock()
t.commit(true)
t.Unlock()
}
func (t *batchTxBuffered) commit(stop bool) {
// all read txs must be closed to acquire boltdb commit rwlock
t.backend.readTx.Lock()
t.unsafeCommit(stop)
t.backend.readTx.Unlock()
}
func (t *batchTxBuffered) unsafeCommit(stop bool) {
if t.backend.readTx.tx != nil {
// wait all store read transactions using the current boltdb tx to finish,
// then close the boltdb tx
go func(tx *bolt.Tx, wg *sync.WaitGroup) {
wg.Wait()
if err := tx.Rollback(); err != nil {
t.backend.lg.Fatal("failed to rollback tx", zap.Error(err))
}
}(t.backend.readTx.tx, t.backend.readTx.txWg)
t.backend.readTx.reset()
}
t.batchTx.commit(stop)
if !stop {
t.backend.readTx.tx = t.backend.begin(false)
}
}
func (t *batchTxBuffered) UnsafePut(bucketName []byte, key []byte, value []byte) {
t.batchTx.UnsafePut(bucketName, key, value)
t.buf.put(bucketName, key, value)
}
func (t *batchTxBuffered) UnsafeSeqPut(bucketName []byte, key []byte, value []byte) {
t.batchTx.UnsafeSeqPut(bucketName, key, value)
t.buf.putSeq(bucketName, key, value)
}

View File

@@ -0,0 +1,197 @@
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"reflect"
"testing"
"time"
bolt "go.etcd.io/bbolt"
)
func TestBatchTxPut(t *testing.T) {
b, tmpPath := NewTmpBackend(time.Hour, 10000)
defer cleanup(b, tmpPath)
tx := b.batchTx
tx.Lock()
defer tx.Unlock()
// create bucket
tx.UnsafeCreateBucket([]byte("test"))
// put
v := []byte("bar")
tx.UnsafePut([]byte("test"), []byte("foo"), v)
// check put result before and after tx is committed
for k := 0; k < 2; k++ {
_, gv := tx.UnsafeRange([]byte("test"), []byte("foo"), nil, 0)
if !reflect.DeepEqual(gv[0], v) {
t.Errorf("v = %s, want %s", string(gv[0]), string(v))
}
tx.commit(false)
}
}
func TestBatchTxRange(t *testing.T) {
b, tmpPath := NewTmpBackend(time.Hour, 10000)
defer cleanup(b, tmpPath)
tx := b.batchTx
tx.Lock()
defer tx.Unlock()
tx.UnsafeCreateBucket([]byte("test"))
// put keys
allKeys := [][]byte{[]byte("foo"), []byte("foo1"), []byte("foo2")}
allVals := [][]byte{[]byte("bar"), []byte("bar1"), []byte("bar2")}
for i := range allKeys {
tx.UnsafePut([]byte("test"), allKeys[i], allVals[i])
}
tests := []struct {
key []byte
endKey []byte
limit int64
wkeys [][]byte
wvals [][]byte
}{
// single key
{
[]byte("foo"), nil, 0,
allKeys[:1], allVals[:1],
},
// single key, bad
{
[]byte("doo"), nil, 0,
nil, nil,
},
// key range
{
[]byte("foo"), []byte("foo1"), 0,
allKeys[:1], allVals[:1],
},
// key range, get all keys
{
[]byte("foo"), []byte("foo3"), 0,
allKeys, allVals,
},
// key range, bad
{
[]byte("goo"), []byte("goo3"), 0,
nil, nil,
},
// key range with effective limit
{
[]byte("foo"), []byte("foo3"), 1,
allKeys[:1], allVals[:1],
},
// key range with limit
{
[]byte("foo"), []byte("foo3"), 4,
allKeys, allVals,
},
}
for i, tt := range tests {
keys, vals := tx.UnsafeRange([]byte("test"), tt.key, tt.endKey, tt.limit)
if !reflect.DeepEqual(keys, tt.wkeys) {
t.Errorf("#%d: keys = %+v, want %+v", i, keys, tt.wkeys)
}
if !reflect.DeepEqual(vals, tt.wvals) {
t.Errorf("#%d: vals = %+v, want %+v", i, vals, tt.wvals)
}
}
}
func TestBatchTxDelete(t *testing.T) {
b, tmpPath := NewTmpBackend(time.Hour, 10000)
defer cleanup(b, tmpPath)
tx := b.batchTx
tx.Lock()
defer tx.Unlock()
tx.UnsafeCreateBucket([]byte("test"))
tx.UnsafePut([]byte("test"), []byte("foo"), []byte("bar"))
tx.UnsafeDelete([]byte("test"), []byte("foo"))
// check put result before and after tx is committed
for k := 0; k < 2; k++ {
ks, _ := tx.UnsafeRange([]byte("test"), []byte("foo"), nil, 0)
if len(ks) != 0 {
t.Errorf("keys on foo = %v, want nil", ks)
}
tx.commit(false)
}
}
func TestBatchTxCommit(t *testing.T) {
b, tmpPath := NewTmpBackend(time.Hour, 10000)
defer cleanup(b, tmpPath)
tx := b.batchTx
tx.Lock()
tx.UnsafeCreateBucket([]byte("test"))
tx.UnsafePut([]byte("test"), []byte("foo"), []byte("bar"))
tx.Unlock()
tx.Commit()
// check whether put happens via db view
b.db.View(func(tx *bolt.Tx) error {
bucket := tx.Bucket([]byte("test"))
if bucket == nil {
t.Errorf("bucket test does not exit")
return nil
}
v := bucket.Get([]byte("foo"))
if v == nil {
t.Errorf("foo key failed to written in backend")
}
return nil
})
}
func TestBatchTxBatchLimitCommit(t *testing.T) {
// start backend with batch limit 1 so one write can
// trigger a commit
b, tmpPath := NewTmpBackend(time.Hour, 1)
defer cleanup(b, tmpPath)
tx := b.batchTx
tx.Lock()
tx.UnsafeCreateBucket([]byte("test"))
tx.UnsafePut([]byte("test"), []byte("foo"), []byte("bar"))
tx.Unlock()
// batch limit commit should have been triggered
// check whether put happens via db view
b.db.View(func(tx *bolt.Tx) error {
bucket := tx.Bucket([]byte("test"))
if bucket == nil {
t.Errorf("bucket test does not exit")
return nil
}
v := bucket.Get([]byte("foo"))
if v == nil {
t.Errorf("foo key failed to written in backend")
}
return nil
})
}

View File

@@ -0,0 +1,23 @@
// Copyright 2016 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build !linux,!windows
package backend
import bolt "go.etcd.io/bbolt"
var boltOpenOptions *bolt.Options
func (bcfg *BackendConfig) mmapSize() int { return int(bcfg.MmapSize) }

View File

@@ -0,0 +1,34 @@
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"syscall"
bolt "go.etcd.io/bbolt"
)
// syscall.MAP_POPULATE on linux 2.6.23+ does sequential read-ahead
// which can speed up entire-database read with boltdb. We want to
// enable MAP_POPULATE for faster key-value store recovery in storage
// package. If your kernel version is lower than 2.6.23
// (https://github.com/torvalds/linux/releases/tag/v2.6.23), mmap might
// silently ignore this flag. Please update your kernel to prevent this.
var boltOpenOptions = &bolt.Options{
MmapFlags: syscall.MAP_POPULATE,
NoFreelistSync: true,
}
func (bcfg *BackendConfig) mmapSize() int { return int(bcfg.MmapSize) }

View File

@@ -0,0 +1,26 @@
// Copyright 2017 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build windows
package backend
import bolt "go.etcd.io/bbolt"
var boltOpenOptions *bolt.Options = nil
// setting mmap size != 0 on windows will allocate the entire
// mmap size for the file, instead of growing it. So, force 0.
func (bcfg *BackendConfig) mmapSize() int { return 0 }

View File

@@ -0,0 +1,16 @@
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package backend defines a standard interface for etcd's backend MVCC storage.
package backend

View File

@@ -0,0 +1,95 @@
// Copyright 2016 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import "github.com/prometheus/client_golang/prometheus"
var (
commitSec = prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: "etcd",
Subsystem: "disk",
Name: "backend_commit_duration_seconds",
Help: "The latency distributions of commit called by backend.",
// lowest bucket start of upper bound 0.001 sec (1 ms) with factor 2
// highest bucket start of 0.001 sec * 2^13 == 8.192 sec
Buckets: prometheus.ExponentialBuckets(0.001, 2, 14),
})
rebalanceSec = prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: "etcd_debugging",
Subsystem: "disk",
Name: "backend_commit_rebalance_duration_seconds",
Help: "The latency distributions of commit.rebalance called by bboltdb backend.",
// lowest bucket start of upper bound 0.001 sec (1 ms) with factor 2
// highest bucket start of 0.001 sec * 2^13 == 8.192 sec
Buckets: prometheus.ExponentialBuckets(0.001, 2, 14),
})
spillSec = prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: "etcd_debugging",
Subsystem: "disk",
Name: "backend_commit_spill_duration_seconds",
Help: "The latency distributions of commit.spill called by bboltdb backend.",
// lowest bucket start of upper bound 0.001 sec (1 ms) with factor 2
// highest bucket start of 0.001 sec * 2^13 == 8.192 sec
Buckets: prometheus.ExponentialBuckets(0.001, 2, 14),
})
writeSec = prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: "etcd_debugging",
Subsystem: "disk",
Name: "backend_commit_write_duration_seconds",
Help: "The latency distributions of commit.write called by bboltdb backend.",
// lowest bucket start of upper bound 0.001 sec (1 ms) with factor 2
// highest bucket start of 0.001 sec * 2^13 == 8.192 sec
Buckets: prometheus.ExponentialBuckets(0.001, 2, 14),
})
defragSec = prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: "etcd",
Subsystem: "disk",
Name: "backend_defrag_duration_seconds",
Help: "The latency distribution of backend defragmentation.",
// 100 MB usually takes 1 sec, so start with 10 MB of 100 ms
// lowest bucket start of upper bound 0.1 sec (100 ms) with factor 2
// highest bucket start of 0.1 sec * 2^12 == 409.6 sec
Buckets: prometheus.ExponentialBuckets(.1, 2, 13),
})
snapshotTransferSec = prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: "etcd",
Subsystem: "disk",
Name: "backend_snapshot_duration_seconds",
Help: "The latency distribution of backend snapshots.",
// lowest bucket start of upper bound 0.01 sec (10 ms) with factor 2
// highest bucket start of 0.01 sec * 2^16 == 655.36 sec
Buckets: prometheus.ExponentialBuckets(.01, 2, 17),
})
)
func init() {
prometheus.MustRegister(commitSec)
prometheus.MustRegister(rebalanceSec)
prometheus.MustRegister(spillSec)
prometheus.MustRegister(writeSec)
prometheus.MustRegister(defragSec)
prometheus.MustRegister(snapshotTransferSec)
}

View File

@@ -0,0 +1,153 @@
// Copyright 2017 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"bytes"
"math"
"sync"
bolt "go.etcd.io/bbolt"
)
// safeRangeBucket is a hack to avoid inadvertently reading duplicate keys;
// overwrites on a bucket should only fetch with limit=1, but safeRangeBucket
// is known to never overwrite any key so range is safe.
var safeRangeBucket = []byte("key")
type ReadTx interface {
Lock()
Unlock()
RLock()
RUnlock()
UnsafeRange(bucketName []byte, key, endKey []byte, limit int64) (keys [][]byte, vals [][]byte)
UnsafeForEach(bucketName []byte, visitor func(k, v []byte) error) error
}
// Base type for readTx and concurrentReadTx to eliminate duplicate functions between these
type baseReadTx struct {
// mu protects accesses to the txReadBuffer
mu sync.RWMutex
buf txReadBuffer
// TODO: group and encapsulate {txMu, tx, buckets, txWg}, as they share the same lifecycle.
// txMu protects accesses to buckets and tx on Range requests.
txMu *sync.RWMutex
tx *bolt.Tx
buckets map[string]*bolt.Bucket
// txWg protects tx from being rolled back at the end of a batch interval until all reads using this tx are done.
txWg *sync.WaitGroup
}
func (baseReadTx *baseReadTx) UnsafeForEach(bucketName []byte, visitor func(k, v []byte) error) error {
dups := make(map[string]struct{})
getDups := func(k, v []byte) error {
dups[string(k)] = struct{}{}
return nil
}
visitNoDup := func(k, v []byte) error {
if _, ok := dups[string(k)]; ok {
return nil
}
return visitor(k, v)
}
if err := baseReadTx.buf.ForEach(bucketName, getDups); err != nil {
return err
}
baseReadTx.txMu.Lock()
err := unsafeForEach(baseReadTx.tx, bucketName, visitNoDup)
baseReadTx.txMu.Unlock()
if err != nil {
return err
}
return baseReadTx.buf.ForEach(bucketName, visitor)
}
func (baseReadTx *baseReadTx) UnsafeRange(bucketName, key, endKey []byte, limit int64) ([][]byte, [][]byte) {
if endKey == nil {
// forbid duplicates for single keys
limit = 1
}
if limit <= 0 {
limit = math.MaxInt64
}
if limit > 1 && !bytes.Equal(bucketName, safeRangeBucket) {
panic("do not use unsafeRange on non-keys bucket")
}
keys, vals := baseReadTx.buf.Range(bucketName, key, endKey, limit)
if int64(len(keys)) == limit {
return keys, vals
}
// find/cache bucket
bn := string(bucketName)
baseReadTx.txMu.RLock()
bucket, ok := baseReadTx.buckets[bn]
baseReadTx.txMu.RUnlock()
lockHeld := false
if !ok {
baseReadTx.txMu.Lock()
lockHeld = true
bucket = baseReadTx.tx.Bucket(bucketName)
baseReadTx.buckets[bn] = bucket
}
// ignore missing bucket since may have been created in this batch
if bucket == nil {
if lockHeld {
baseReadTx.txMu.Unlock()
}
return keys, vals
}
if !lockHeld {
baseReadTx.txMu.Lock()
lockHeld = true
}
c := bucket.Cursor()
baseReadTx.txMu.Unlock()
k2, v2 := unsafeRange(c, key, endKey, limit-int64(len(keys)))
return append(k2, keys...), append(v2, vals...)
}
type readTx struct {
baseReadTx
}
func (rt *readTx) Lock() { rt.mu.Lock() }
func (rt *readTx) Unlock() { rt.mu.Unlock() }
func (rt *readTx) RLock() { rt.mu.RLock() }
func (rt *readTx) RUnlock() { rt.mu.RUnlock() }
func (rt *readTx) reset() {
rt.buf.reset()
rt.buckets = make(map[string]*bolt.Bucket)
rt.tx = nil
rt.txWg = new(sync.WaitGroup)
}
type concurrentReadTx struct {
baseReadTx
}
func (rt *concurrentReadTx) Lock() {}
func (rt *concurrentReadTx) Unlock() {}
// RLock is no-op. concurrentReadTx does not need to be locked after it is created.
func (rt *concurrentReadTx) RLock() {}
// RUnlock signals the end of concurrentReadTx.
func (rt *concurrentReadTx) RUnlock() { rt.txWg.Done() }

View File

@@ -0,0 +1,203 @@
// Copyright 2017 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package backend
import (
"bytes"
"sort"
)
// txBuffer handles functionality shared between txWriteBuffer and txReadBuffer.
type txBuffer struct {
buckets map[string]*bucketBuffer
}
func (txb *txBuffer) reset() {
for k, v := range txb.buckets {
if v.used == 0 {
// demote
delete(txb.buckets, k)
}
v.used = 0
}
}
// txWriteBuffer buffers writes of pending updates that have not yet committed.
type txWriteBuffer struct {
txBuffer
seq bool
}
func (txw *txWriteBuffer) put(bucket, k, v []byte) {
txw.seq = false
txw.putSeq(bucket, k, v)
}
func (txw *txWriteBuffer) putSeq(bucket, k, v []byte) {
b, ok := txw.buckets[string(bucket)]
if !ok {
b = newBucketBuffer()
txw.buckets[string(bucket)] = b
}
b.add(k, v)
}
func (txw *txWriteBuffer) writeback(txr *txReadBuffer) {
for k, wb := range txw.buckets {
rb, ok := txr.buckets[k]
if !ok {
delete(txw.buckets, k)
txr.buckets[k] = wb
continue
}
if !txw.seq && wb.used > 1 {
// assume no duplicate keys
sort.Sort(wb)
}
rb.merge(wb)
}
txw.reset()
}
// txReadBuffer accesses buffered updates.
type txReadBuffer struct{ txBuffer }
func (txr *txReadBuffer) Range(bucketName, key, endKey []byte, limit int64) ([][]byte, [][]byte) {
if b := txr.buckets[string(bucketName)]; b != nil {
return b.Range(key, endKey, limit)
}
return nil, nil
}
func (txr *txReadBuffer) ForEach(bucketName []byte, visitor func(k, v []byte) error) error {
if b := txr.buckets[string(bucketName)]; b != nil {
return b.ForEach(visitor)
}
return nil
}
// unsafeCopy returns a copy of txReadBuffer, caller should acquire backend.readTx.RLock()
func (txr *txReadBuffer) unsafeCopy() txReadBuffer {
txrCopy := txReadBuffer{
txBuffer: txBuffer{
buckets: make(map[string]*bucketBuffer, len(txr.txBuffer.buckets)),
},
}
for bucketName, bucket := range txr.txBuffer.buckets {
txrCopy.txBuffer.buckets[bucketName] = bucket.Copy()
}
return txrCopy
}
type kv struct {
key []byte
val []byte
}
// bucketBuffer buffers key-value pairs that are pending commit.
type bucketBuffer struct {
buf []kv
// used tracks number of elements in use so buf can be reused without reallocation.
used int
}
func newBucketBuffer() *bucketBuffer {
return &bucketBuffer{buf: make([]kv, 512), used: 0}
}
func (bb *bucketBuffer) Range(key, endKey []byte, limit int64) (keys [][]byte, vals [][]byte) {
f := func(i int) bool { return bytes.Compare(bb.buf[i].key, key) >= 0 }
idx := sort.Search(bb.used, f)
if idx < 0 {
return nil, nil
}
if len(endKey) == 0 {
if bytes.Equal(key, bb.buf[idx].key) {
keys = append(keys, bb.buf[idx].key)
vals = append(vals, bb.buf[idx].val)
}
return keys, vals
}
if bytes.Compare(endKey, bb.buf[idx].key) <= 0 {
return nil, nil
}
for i := idx; i < bb.used && int64(len(keys)) < limit; i++ {
if bytes.Compare(endKey, bb.buf[i].key) <= 0 {
break
}
keys = append(keys, bb.buf[i].key)
vals = append(vals, bb.buf[i].val)
}
return keys, vals
}
func (bb *bucketBuffer) ForEach(visitor func(k, v []byte) error) error {
for i := 0; i < bb.used; i++ {
if err := visitor(bb.buf[i].key, bb.buf[i].val); err != nil {
return err
}
}
return nil
}
func (bb *bucketBuffer) add(k, v []byte) {
bb.buf[bb.used].key, bb.buf[bb.used].val = k, v
bb.used++
if bb.used == len(bb.buf) {
buf := make([]kv, (3*len(bb.buf))/2)
copy(buf, bb.buf)
bb.buf = buf
}
}
// merge merges data from bbsrc into bb.
func (bb *bucketBuffer) merge(bbsrc *bucketBuffer) {
for i := 0; i < bbsrc.used; i++ {
bb.add(bbsrc.buf[i].key, bbsrc.buf[i].val)
}
if bb.used == bbsrc.used {
return
}
if bytes.Compare(bb.buf[(bb.used-bbsrc.used)-1].key, bbsrc.buf[0].key) < 0 {
return
}
sort.Stable(bb)
// remove duplicates, using only newest update
widx := 0
for ridx := 1; ridx < bb.used; ridx++ {
if !bytes.Equal(bb.buf[ridx].key, bb.buf[widx].key) {
widx++
}
bb.buf[widx] = bb.buf[ridx]
}
bb.used = widx + 1
}
func (bb *bucketBuffer) Len() int { return bb.used }
func (bb *bucketBuffer) Less(i, j int) bool {
return bytes.Compare(bb.buf[i].key, bb.buf[j].key) < 0
}
func (bb *bucketBuffer) Swap(i, j int) { bb.buf[i], bb.buf[j] = bb.buf[j], bb.buf[i] }
func (bb *bucketBuffer) Copy() *bucketBuffer {
bbCopy := bucketBuffer{
buf: make([]kv, len(bb.buf)),
used: bb.used,
}
copy(bbCopy.buf, bb.buf)
return &bbCopy
}