mirror of
https://github.com/etcd-io/etcd.git
synced 2024-09-27 06:25:44 +00:00
*: godep btree
This commit is contained in:
parent
660fd5e3e1
commit
9d831e3075
12
Godeps/Godeps.json
generated
12
Godeps/Godeps.json
generated
@ -20,14 +20,14 @@
|
||||
"Comment": "v0.2.0-rc1-130-g6aa2da5",
|
||||
"Rev": "6aa2da5a7a905609c93036b9307185a04a5a84a5"
|
||||
},
|
||||
{
|
||||
"ImportPath": "github.com/coreos/pkg/capnslog",
|
||||
"Rev": "9d5dd4632f9ece71bdf83d31253593a633e73df5"
|
||||
},
|
||||
{
|
||||
"ImportPath": "github.com/coreos/go-semver/semver",
|
||||
"Rev": "568e959cd89871e61434c1143528d9162da89ef2"
|
||||
},
|
||||
{
|
||||
"ImportPath": "github.com/coreos/pkg/capnslog",
|
||||
"Rev": "9d5dd4632f9ece71bdf83d31253593a633e73df5"
|
||||
},
|
||||
{
|
||||
"ImportPath": "github.com/gogo/protobuf/proto",
|
||||
"Rev": "bc946d07d1016848dfd2507f90f0859c9471681e"
|
||||
@ -36,6 +36,10 @@
|
||||
"ImportPath": "github.com/golang/protobuf/proto",
|
||||
"Rev": "5677a0e3d5e89854c9974e1256839ee23f8233ca"
|
||||
},
|
||||
{
|
||||
"ImportPath": "github.com/google/btree",
|
||||
"Rev": "cc6329d4279e3f025a53a83c397d2339b5705c45"
|
||||
},
|
||||
{
|
||||
"ImportPath": "github.com/jonboulle/clockwork",
|
||||
"Rev": "72f9bd7c4e0c2a40055ab3d0f09654f730cce982"
|
||||
|
1
Godeps/_workspace/src/github.com/google/btree/.travis.yml
generated
vendored
Normal file
1
Godeps/_workspace/src/github.com/google/btree/.travis.yml
generated
vendored
Normal file
@ -0,0 +1 @@
|
||||
language: go
|
202
Godeps/_workspace/src/github.com/google/btree/LICENSE
generated
vendored
Normal file
202
Godeps/_workspace/src/github.com/google/btree/LICENSE
generated
vendored
Normal file
@ -0,0 +1,202 @@
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
12
Godeps/_workspace/src/github.com/google/btree/README.md
generated
vendored
Normal file
12
Godeps/_workspace/src/github.com/google/btree/README.md
generated
vendored
Normal file
@ -0,0 +1,12 @@
|
||||
# BTree implementation for Go
|
||||
|
||||

|
||||
|
||||
This package provides an in-memory B-Tree implementation for Go, useful as a
|
||||
an ordered, mutable data structure.
|
||||
|
||||
The API is based off of the wonderful
|
||||
http://godoc.org/github.com/petar/GoLLRB/llrb, and is meant to allow btree to
|
||||
act as a drop-in replacement for gollrb trees.
|
||||
|
||||
See http://godoc.org/github.com/google/btree for documentation.
|
571
Godeps/_workspace/src/github.com/google/btree/btree.go
generated
vendored
Normal file
571
Godeps/_workspace/src/github.com/google/btree/btree.go
generated
vendored
Normal file
@ -0,0 +1,571 @@
|
||||
// Copyright 2014 Google Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Package btree implements in-memory B-Trees of arbitrary degree.
|
||||
//
|
||||
// btree implements an in-memory B-Tree for use as an ordered data structure.
|
||||
// It is not meant for persistent storage solutions.
|
||||
//
|
||||
// It has a flatter structure than an equivalent red-black or other binary tree,
|
||||
// which in some cases yields better memory usage and/or performance.
|
||||
// See some discussion on the matter here:
|
||||
// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
|
||||
// Note, though, that this project is in no way related to the C++ B-Tree
|
||||
// implmentation written about there.
|
||||
//
|
||||
// Within this tree, each node contains a slice of items and a (possibly nil)
|
||||
// slice of children. For basic numeric values or raw structs, this can cause
|
||||
// efficiency differences when compared to equivalent C++ template code that
|
||||
// stores values in arrays within the node:
|
||||
// * Due to the overhead of storing values as interfaces (each
|
||||
// value needs to be stored as the value itself, then 2 words for the
|
||||
// interface pointing to that value and its type), resulting in higher
|
||||
// memory use.
|
||||
// * Since interfaces can point to values anywhere in memory, values are
|
||||
// most likely not stored in contiguous blocks, resulting in a higher
|
||||
// number of cache misses.
|
||||
// These issues don't tend to matter, though, when working with strings or other
|
||||
// heap-allocated structures, since C++-equivalent structures also must store
|
||||
// pointers and also distribute their values across the heap.
|
||||
//
|
||||
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
|
||||
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
|
||||
// widely used ordered tree implementation in the Go ecosystem currently.
|
||||
// Its functions, therefore, exactly mirror those of
|
||||
// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
|
||||
// support storing multiple equivalent values or backwards iteration.
|
||||
package btree
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"sort"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// Item represents a single object in the tree.
|
||||
type Item interface {
|
||||
// Less tests whether the current item is less than the given argument.
|
||||
//
|
||||
// This must provide a strict weak ordering.
|
||||
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
|
||||
// hold one of either a or b in the tree).
|
||||
Less(than Item) bool
|
||||
}
|
||||
|
||||
// ItemIterator allows callers of Ascend* to iterate in-order over portions of
|
||||
// the tree. When this function returns false, iteration will stop and the
|
||||
// associated Ascend* function will immediately return.
|
||||
type ItemIterator func(i Item) bool
|
||||
|
||||
// New creates a new B-Tree with the given degree.
|
||||
//
|
||||
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
|
||||
// and 2-4 children).
|
||||
func New(degree int) *BTree {
|
||||
if degree <= 1 {
|
||||
panic("bad degree")
|
||||
}
|
||||
return &BTree{
|
||||
degree: degree,
|
||||
freelist: make([]*node, 0, 32),
|
||||
}
|
||||
}
|
||||
|
||||
// items stores items in a node.
|
||||
type items []Item
|
||||
|
||||
// insertAt inserts a value into the given index, pushing all subsequent values
|
||||
// forward.
|
||||
func (s *items) insertAt(index int, item Item) {
|
||||
*s = append(*s, nil)
|
||||
if index < len(*s) {
|
||||
copy((*s)[index+1:], (*s)[index:])
|
||||
}
|
||||
(*s)[index] = item
|
||||
}
|
||||
|
||||
// removeAt removes a value at a given index, pulling all subsequent values
|
||||
// back.
|
||||
func (s *items) removeAt(index int) Item {
|
||||
item := (*s)[index]
|
||||
copy((*s)[index:], (*s)[index+1:])
|
||||
*s = (*s)[:len(*s)-1]
|
||||
return item
|
||||
}
|
||||
|
||||
// pop removes and returns the last element in the list.
|
||||
func (s *items) pop() (out Item) {
|
||||
index := len(*s) - 1
|
||||
out, *s = (*s)[index], (*s)[:index]
|
||||
return
|
||||
}
|
||||
|
||||
// find returns the index where the given item should be inserted into this
|
||||
// list. 'found' is true if the item already exists in the list at the given
|
||||
// index.
|
||||
func (s items) find(item Item) (index int, found bool) {
|
||||
i := sort.Search(len(s), func(i int) bool {
|
||||
return item.Less(s[i])
|
||||
})
|
||||
if i > 0 && !s[i-1].Less(item) {
|
||||
return i - 1, true
|
||||
}
|
||||
return i, false
|
||||
}
|
||||
|
||||
// children stores child nodes in a node.
|
||||
type children []*node
|
||||
|
||||
// insertAt inserts a value into the given index, pushing all subsequent values
|
||||
// forward.
|
||||
func (s *children) insertAt(index int, n *node) {
|
||||
*s = append(*s, nil)
|
||||
if index < len(*s) {
|
||||
copy((*s)[index+1:], (*s)[index:])
|
||||
}
|
||||
(*s)[index] = n
|
||||
}
|
||||
|
||||
// removeAt removes a value at a given index, pulling all subsequent values
|
||||
// back.
|
||||
func (s *children) removeAt(index int) *node {
|
||||
n := (*s)[index]
|
||||
copy((*s)[index:], (*s)[index+1:])
|
||||
*s = (*s)[:len(*s)-1]
|
||||
return n
|
||||
}
|
||||
|
||||
// pop removes and returns the last element in the list.
|
||||
func (s *children) pop() (out *node) {
|
||||
index := len(*s) - 1
|
||||
out, *s = (*s)[index], (*s)[:index]
|
||||
return
|
||||
}
|
||||
|
||||
// node is an internal node in a tree.
|
||||
//
|
||||
// It must at all times maintain the invariant that either
|
||||
// * len(children) == 0, len(items) unconstrained
|
||||
// * len(children) == len(items) + 1
|
||||
type node struct {
|
||||
items items
|
||||
children children
|
||||
t *BTree
|
||||
}
|
||||
|
||||
// split splits the given node at the given index. The current node shrinks,
|
||||
// and this function returns the item that existed at that index and a new node
|
||||
// containing all items/children after it.
|
||||
func (n *node) split(i int) (Item, *node) {
|
||||
item := n.items[i]
|
||||
next := n.t.newNode()
|
||||
next.items = append(next.items, n.items[i+1:]...)
|
||||
n.items = n.items[:i]
|
||||
if len(n.children) > 0 {
|
||||
next.children = append(next.children, n.children[i+1:]...)
|
||||
n.children = n.children[:i+1]
|
||||
}
|
||||
return item, next
|
||||
}
|
||||
|
||||
// maybeSplitChild checks if a child should be split, and if so splits it.
|
||||
// Returns whether or not a split occurred.
|
||||
func (n *node) maybeSplitChild(i, maxItems int) bool {
|
||||
if len(n.children[i].items) < maxItems {
|
||||
return false
|
||||
}
|
||||
first := n.children[i]
|
||||
item, second := first.split(maxItems / 2)
|
||||
n.items.insertAt(i, item)
|
||||
n.children.insertAt(i+1, second)
|
||||
return true
|
||||
}
|
||||
|
||||
// insert inserts an item into the subtree rooted at this node, making sure
|
||||
// no nodes in the subtree exceed maxItems items. Should an equivalent item be
|
||||
// be found/replaced by insert, it will be returned.
|
||||
func (n *node) insert(item Item, maxItems int) Item {
|
||||
i, found := n.items.find(item)
|
||||
if found {
|
||||
out := n.items[i]
|
||||
n.items[i] = item
|
||||
return out
|
||||
}
|
||||
if len(n.children) == 0 {
|
||||
n.items.insertAt(i, item)
|
||||
return nil
|
||||
}
|
||||
if n.maybeSplitChild(i, maxItems) {
|
||||
inTree := n.items[i]
|
||||
switch {
|
||||
case item.Less(inTree):
|
||||
// no change, we want first split node
|
||||
case inTree.Less(item):
|
||||
i++ // we want second split node
|
||||
default:
|
||||
out := n.items[i]
|
||||
n.items[i] = item
|
||||
return out
|
||||
}
|
||||
}
|
||||
return n.children[i].insert(item, maxItems)
|
||||
}
|
||||
|
||||
// get finds the given key in the subtree and returns it.
|
||||
func (n *node) get(key Item) Item {
|
||||
i, found := n.items.find(key)
|
||||
if found {
|
||||
return n.items[i]
|
||||
} else if len(n.children) > 0 {
|
||||
return n.children[i].get(key)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// toRemove details what item to remove in a node.remove call.
|
||||
type toRemove int
|
||||
|
||||
const (
|
||||
removeItem toRemove = iota // removes the given item
|
||||
removeMin // removes smallest item in the subtree
|
||||
removeMax // removes largest item in the subtree
|
||||
)
|
||||
|
||||
// remove removes an item from the subtree rooted at this node.
|
||||
func (n *node) remove(item Item, minItems int, typ toRemove) Item {
|
||||
var i int
|
||||
var found bool
|
||||
switch typ {
|
||||
case removeMax:
|
||||
if len(n.children) == 0 {
|
||||
return n.items.pop()
|
||||
}
|
||||
i = len(n.items)
|
||||
case removeMin:
|
||||
if len(n.children) == 0 {
|
||||
return n.items.removeAt(0)
|
||||
}
|
||||
i = 0
|
||||
case removeItem:
|
||||
i, found = n.items.find(item)
|
||||
if len(n.children) == 0 {
|
||||
if found {
|
||||
return n.items.removeAt(i)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
default:
|
||||
panic("invalid type")
|
||||
}
|
||||
// If we get to here, we have children.
|
||||
child := n.children[i]
|
||||
if len(child.items) <= minItems {
|
||||
return n.growChildAndRemove(i, item, minItems, typ)
|
||||
}
|
||||
// Either we had enough items to begin with, or we've done some
|
||||
// merging/stealing, because we've got enough now and we're ready to return
|
||||
// stuff.
|
||||
if found {
|
||||
// The item exists at index 'i', and the child we've selected can give us a
|
||||
// predecessor, since if we've gotten here it's got > minItems items in it.
|
||||
out := n.items[i]
|
||||
// We use our special-case 'remove' call with typ=maxItem to pull the
|
||||
// predecessor of item i (the rightmost leaf of our immediate left child)
|
||||
// and set it into where we pulled the item from.
|
||||
n.items[i] = child.remove(nil, minItems, removeMax)
|
||||
return out
|
||||
}
|
||||
// Final recursive call. Once we're here, we know that the item isn't in this
|
||||
// node and that the child is big enough to remove from.
|
||||
return child.remove(item, minItems, typ)
|
||||
}
|
||||
|
||||
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
|
||||
// item from it while keeping it at minItems, then calls remove to actually
|
||||
// remove it.
|
||||
//
|
||||
// Most documentation says we have to do two sets of special casing:
|
||||
// 1) item is in this node
|
||||
// 2) item is in child
|
||||
// In both cases, we need to handle the two subcases:
|
||||
// A) node has enough values that it can spare one
|
||||
// B) node doesn't have enough values
|
||||
// For the latter, we have to check:
|
||||
// a) left sibling has node to spare
|
||||
// b) right sibling has node to spare
|
||||
// c) we must merge
|
||||
// To simplify our code here, we handle cases #1 and #2 the same:
|
||||
// If a node doesn't have enough items, we make sure it does (using a,b,c).
|
||||
// We then simply redo our remove call, and the second time (regardless of
|
||||
// whether we're in case 1 or 2), we'll have enough items and can guarantee
|
||||
// that we hit case A.
|
||||
func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
|
||||
child := n.children[i]
|
||||
if i > 0 && len(n.children[i-1].items) > minItems {
|
||||
// Steal from left child
|
||||
stealFrom := n.children[i-1]
|
||||
stolenItem := stealFrom.items.pop()
|
||||
child.items.insertAt(0, n.items[i-1])
|
||||
n.items[i-1] = stolenItem
|
||||
if len(stealFrom.children) > 0 {
|
||||
child.children.insertAt(0, stealFrom.children.pop())
|
||||
}
|
||||
} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
|
||||
// steal from right child
|
||||
stealFrom := n.children[i+1]
|
||||
stolenItem := stealFrom.items.removeAt(0)
|
||||
child.items = append(child.items, n.items[i])
|
||||
n.items[i] = stolenItem
|
||||
if len(stealFrom.children) > 0 {
|
||||
child.children = append(child.children, stealFrom.children.removeAt(0))
|
||||
}
|
||||
} else {
|
||||
if i >= len(n.items) {
|
||||
i--
|
||||
child = n.children[i]
|
||||
}
|
||||
// merge with right child
|
||||
mergeItem := n.items.removeAt(i)
|
||||
mergeChild := n.children.removeAt(i + 1)
|
||||
child.items = append(child.items, mergeItem)
|
||||
child.items = append(child.items, mergeChild.items...)
|
||||
child.children = append(child.children, mergeChild.children...)
|
||||
n.t.freeNode(mergeChild)
|
||||
}
|
||||
return n.remove(item, minItems, typ)
|
||||
}
|
||||
|
||||
// iterate provides a simple method for iterating over elements in the tree.
|
||||
// It could probably use some work to be extra-efficient (it calls from() a
|
||||
// little more than it should), but it works pretty well for now.
|
||||
//
|
||||
// It requires that 'from' and 'to' both return true for values we should hit
|
||||
// with the iterator. It should also be the case that 'from' returns true for
|
||||
// values less than or equal to values 'to' returns true for, and 'to'
|
||||
// returns true for values greater than or equal to those that 'from'
|
||||
// does.
|
||||
func (n *node) iterate(from, to func(Item) bool, iter ItemIterator) bool {
|
||||
for i, item := range n.items {
|
||||
if !from(item) {
|
||||
continue
|
||||
}
|
||||
if len(n.children) > 0 && !n.children[i].iterate(from, to, iter) {
|
||||
return false
|
||||
}
|
||||
if !to(item) {
|
||||
return false
|
||||
}
|
||||
if !iter(item) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
if len(n.children) > 0 {
|
||||
return n.children[len(n.children)-1].iterate(from, to, iter)
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Used for testing/debugging purposes.
|
||||
func (n *node) print(w io.Writer, level int) {
|
||||
fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
|
||||
for _, c := range n.children {
|
||||
c.print(w, level+1)
|
||||
}
|
||||
}
|
||||
|
||||
// BTree is an implementation of a B-Tree.
|
||||
//
|
||||
// BTree stores Item instances in an ordered structure, allowing easy insertion,
|
||||
// removal, and iteration.
|
||||
//
|
||||
// Write operations are not safe for concurrent mutation by multiple
|
||||
// goroutines, but Read operations are.
|
||||
type BTree struct {
|
||||
degree int
|
||||
length int
|
||||
root *node
|
||||
freelist []*node
|
||||
}
|
||||
|
||||
// maxItems returns the max number of items to allow per node.
|
||||
func (t *BTree) maxItems() int {
|
||||
return t.degree*2 - 1
|
||||
}
|
||||
|
||||
// minItems returns the min number of items to allow per node (ignored for the
|
||||
// root node).
|
||||
func (t *BTree) minItems() int {
|
||||
return t.degree - 1
|
||||
}
|
||||
|
||||
func (t *BTree) newNode() (n *node) {
|
||||
index := len(t.freelist) - 1
|
||||
if index < 0 {
|
||||
return &node{t: t}
|
||||
}
|
||||
t.freelist, n = t.freelist[:index], t.freelist[index]
|
||||
return
|
||||
}
|
||||
|
||||
func (t *BTree) freeNode(n *node) {
|
||||
if len(t.freelist) < cap(t.freelist) {
|
||||
for i := range n.items {
|
||||
n.items[i] = nil // clear to allow GC
|
||||
}
|
||||
n.items = n.items[:0]
|
||||
for i := range n.children {
|
||||
n.children[i] = nil // clear to allow GC
|
||||
}
|
||||
n.children = n.children[:0]
|
||||
t.freelist = append(t.freelist, n)
|
||||
}
|
||||
}
|
||||
|
||||
// ReplaceOrInsert adds the given item to the tree. If an item in the tree
|
||||
// already equals the given one, it is removed from the tree and returned.
|
||||
// Otherwise, nil is returned.
|
||||
//
|
||||
// nil cannot be added to the tree (will panic).
|
||||
func (t *BTree) ReplaceOrInsert(item Item) Item {
|
||||
if item == nil {
|
||||
panic("nil item being added to BTree")
|
||||
}
|
||||
if t.root == nil {
|
||||
t.root = t.newNode()
|
||||
t.root.items = append(t.root.items, item)
|
||||
t.length++
|
||||
return nil
|
||||
} else if len(t.root.items) >= t.maxItems() {
|
||||
item2, second := t.root.split(t.maxItems() / 2)
|
||||
oldroot := t.root
|
||||
t.root = t.newNode()
|
||||
t.root.items = append(t.root.items, item2)
|
||||
t.root.children = append(t.root.children, oldroot, second)
|
||||
}
|
||||
out := t.root.insert(item, t.maxItems())
|
||||
if out == nil {
|
||||
t.length++
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// Delete removes an item equal to the passed in item from the tree, returning
|
||||
// it. If no such item exists, returns nil.
|
||||
func (t *BTree) Delete(item Item) Item {
|
||||
return t.deleteItem(item, removeItem)
|
||||
}
|
||||
|
||||
// DeleteMin removes the smallest item in the tree and returns it.
|
||||
// If no such item exists, returns nil.
|
||||
func (t *BTree) DeleteMin() Item {
|
||||
return t.deleteItem(nil, removeMin)
|
||||
}
|
||||
|
||||
// DeleteMax removes the largest item in the tree and returns it.
|
||||
// If no such item exists, returns nil.
|
||||
func (t *BTree) DeleteMax() Item {
|
||||
return t.deleteItem(nil, removeMax)
|
||||
}
|
||||
|
||||
func (t *BTree) deleteItem(item Item, typ toRemove) Item {
|
||||
if t.root == nil || len(t.root.items) == 0 {
|
||||
return nil
|
||||
}
|
||||
out := t.root.remove(item, t.minItems(), typ)
|
||||
if len(t.root.items) == 0 && len(t.root.children) > 0 {
|
||||
oldroot := t.root
|
||||
t.root = t.root.children[0]
|
||||
t.freeNode(oldroot)
|
||||
}
|
||||
if out != nil {
|
||||
t.length--
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// AscendRange calls the iterator for every value in the tree within the range
|
||||
// [greaterOrEqual, lessThan), until iterator returns false.
|
||||
func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(
|
||||
func(a Item) bool { return !a.Less(greaterOrEqual) },
|
||||
func(a Item) bool { return a.Less(lessThan) },
|
||||
iterator)
|
||||
}
|
||||
|
||||
// AscendLessThan calls the iterator for every value in the tree within the range
|
||||
// [first, pivot), until iterator returns false.
|
||||
func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(
|
||||
func(a Item) bool { return true },
|
||||
func(a Item) bool { return a.Less(pivot) },
|
||||
iterator)
|
||||
}
|
||||
|
||||
// AscendGreaterOrEqual calls the iterator for every value in the tree within
|
||||
// the range [pivot, last], until iterator returns false.
|
||||
func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(
|
||||
func(a Item) bool { return !a.Less(pivot) },
|
||||
func(a Item) bool { return true },
|
||||
iterator)
|
||||
}
|
||||
|
||||
// Ascend calls the iterator for every value in the tree within the range
|
||||
// [first, last], until iterator returns false.
|
||||
func (t *BTree) Ascend(iterator ItemIterator) {
|
||||
if t.root == nil {
|
||||
return
|
||||
}
|
||||
t.root.iterate(
|
||||
func(a Item) bool { return true },
|
||||
func(a Item) bool { return true },
|
||||
iterator)
|
||||
}
|
||||
|
||||
// Get looks for the key item in the tree, returning it. It returns nil if
|
||||
// unable to find that item.
|
||||
func (t *BTree) Get(key Item) Item {
|
||||
if t.root == nil {
|
||||
return nil
|
||||
}
|
||||
return t.root.get(key)
|
||||
}
|
||||
|
||||
// Has returns true if the given key is in the tree.
|
||||
func (t *BTree) Has(key Item) bool {
|
||||
return t.Get(key) != nil
|
||||
}
|
||||
|
||||
// Len returns the number of items currently in the tree.
|
||||
func (t *BTree) Len() int {
|
||||
return t.length
|
||||
}
|
||||
|
||||
// Int implements the Item interface for integers.
|
||||
type Int int
|
||||
|
||||
// Less returns true if int(a) < int(b).
|
||||
func (a Int) Less(b Item) bool {
|
||||
return a < b.(Int)
|
||||
}
|
76
Godeps/_workspace/src/github.com/google/btree/btree_mem.go
generated
vendored
Normal file
76
Godeps/_workspace/src/github.com/google/btree/btree_mem.go
generated
vendored
Normal file
@ -0,0 +1,76 @@
|
||||
// Copyright 2014 Google Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// +build ignore
|
||||
|
||||
// This binary compares memory usage between btree and gollrb.
|
||||
package main
|
||||
|
||||
import (
|
||||
"flag"
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"runtime"
|
||||
"time"
|
||||
|
||||
"github.com/coreos/etcd/Godeps/_workspace/src/github.com/google/btree"
|
||||
"github.com/petar/GoLLRB/llrb"
|
||||
)
|
||||
|
||||
var (
|
||||
size = flag.Int("size", 1000000, "size of the tree to build")
|
||||
degree = flag.Int("degree", 8, "degree of btree")
|
||||
gollrb = flag.Bool("llrb", false, "use llrb instead of btree")
|
||||
)
|
||||
|
||||
func main() {
|
||||
flag.Parse()
|
||||
vals := rand.Perm(*size)
|
||||
var t, v interface{}
|
||||
v = vals
|
||||
var stats runtime.MemStats
|
||||
for i := 0; i < 10; i++ {
|
||||
runtime.GC()
|
||||
}
|
||||
fmt.Println("-------- BEFORE ----------")
|
||||
runtime.ReadMemStats(&stats)
|
||||
fmt.Printf("%+v\n", stats)
|
||||
start := time.Now()
|
||||
if *gollrb {
|
||||
tr := llrb.New()
|
||||
for _, v := range vals {
|
||||
tr.ReplaceOrInsert(llrb.Int(v))
|
||||
}
|
||||
t = tr // keep it around
|
||||
} else {
|
||||
tr := btree.New(*degree)
|
||||
for _, v := range vals {
|
||||
tr.ReplaceOrInsert(btree.Int(v))
|
||||
}
|
||||
t = tr // keep it around
|
||||
}
|
||||
fmt.Printf("%v inserts in %v\n", *size, time.Since(start))
|
||||
fmt.Println("-------- AFTER ----------")
|
||||
runtime.ReadMemStats(&stats)
|
||||
fmt.Printf("%+v\n", stats)
|
||||
for i := 0; i < 10; i++ {
|
||||
runtime.GC()
|
||||
}
|
||||
fmt.Println("-------- AFTER GC ----------")
|
||||
runtime.ReadMemStats(&stats)
|
||||
fmt.Printf("%+v\n", stats)
|
||||
if t == v {
|
||||
fmt.Println("to make sure vals and tree aren't GC'd")
|
||||
}
|
||||
}
|
293
Godeps/_workspace/src/github.com/google/btree/btree_test.go
generated
vendored
Normal file
293
Godeps/_workspace/src/github.com/google/btree/btree_test.go
generated
vendored
Normal file
@ -0,0 +1,293 @@
|
||||
// Copyright 2014 Google Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package btree
|
||||
|
||||
import (
|
||||
"flag"
|
||||
"fmt"
|
||||
"math/rand"
|
||||
"reflect"
|
||||
"testing"
|
||||
"time"
|
||||
)
|
||||
|
||||
func init() {
|
||||
seed := time.Now().Unix()
|
||||
fmt.Println(seed)
|
||||
rand.Seed(seed)
|
||||
}
|
||||
|
||||
// perm returns a random permutation of n Int items in the range [0, n).
|
||||
func perm(n int) (out []Item) {
|
||||
for _, v := range rand.Perm(n) {
|
||||
out = append(out, Int(v))
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// rang returns an ordered list of Int items in the range [0, n).
|
||||
func rang(n int) (out []Item) {
|
||||
for i := 0; i < n; i++ {
|
||||
out = append(out, Int(i))
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// all extracts all items from a tree in order as a slice.
|
||||
func all(t *BTree) (out []Item) {
|
||||
t.Ascend(func(a Item) bool {
|
||||
out = append(out, a)
|
||||
return true
|
||||
})
|
||||
return
|
||||
}
|
||||
|
||||
var btreeDegree = flag.Int("degree", 32, "B-Tree degree")
|
||||
|
||||
func TestBTree(t *testing.T) {
|
||||
tr := New(*btreeDegree)
|
||||
const treeSize = 10000
|
||||
for i := 0; i < 10; i++ {
|
||||
for _, item := range perm(treeSize) {
|
||||
if x := tr.ReplaceOrInsert(item); x != nil {
|
||||
t.Fatal("insert found item", item)
|
||||
}
|
||||
}
|
||||
for _, item := range perm(treeSize) {
|
||||
if x := tr.ReplaceOrInsert(item); x == nil {
|
||||
t.Fatal("insert didn't find item", item)
|
||||
}
|
||||
}
|
||||
got := all(tr)
|
||||
want := rang(treeSize)
|
||||
if !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("mismatch:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
for _, item := range perm(treeSize) {
|
||||
if x := tr.Delete(item); x == nil {
|
||||
t.Fatalf("didn't find %v", item)
|
||||
}
|
||||
}
|
||||
if got = all(tr); len(got) > 0 {
|
||||
t.Fatalf("some left!: %v", got)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func ExampleBTree() {
|
||||
tr := New(*btreeDegree)
|
||||
for i := Int(0); i < 10; i++ {
|
||||
tr.ReplaceOrInsert(i)
|
||||
}
|
||||
fmt.Println("len: ", tr.Len())
|
||||
fmt.Println("get3: ", tr.Get(Int(3)))
|
||||
fmt.Println("get100: ", tr.Get(Int(100)))
|
||||
fmt.Println("del4: ", tr.Delete(Int(4)))
|
||||
fmt.Println("del100: ", tr.Delete(Int(100)))
|
||||
fmt.Println("replace5: ", tr.ReplaceOrInsert(Int(5)))
|
||||
fmt.Println("replace100:", tr.ReplaceOrInsert(Int(100)))
|
||||
fmt.Println("delmin: ", tr.DeleteMin())
|
||||
fmt.Println("delmax: ", tr.DeleteMax())
|
||||
fmt.Println("len: ", tr.Len())
|
||||
// Output:
|
||||
// len: 10
|
||||
// get3: 3
|
||||
// get100: <nil>
|
||||
// del4: 4
|
||||
// del100: <nil>
|
||||
// replace5: 5
|
||||
// replace100: <nil>
|
||||
// delmin: 0
|
||||
// delmax: 100
|
||||
// len: 8
|
||||
}
|
||||
|
||||
func TestDeleteMin(t *testing.T) {
|
||||
tr := New(3)
|
||||
for _, v := range perm(100) {
|
||||
tr.ReplaceOrInsert(v)
|
||||
}
|
||||
var got []Item
|
||||
for v := tr.DeleteMin(); v != nil; v = tr.DeleteMin() {
|
||||
got = append(got, v)
|
||||
}
|
||||
if want := rang(100); !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
}
|
||||
|
||||
func TestDeleteMax(t *testing.T) {
|
||||
tr := New(3)
|
||||
for _, v := range perm(100) {
|
||||
tr.ReplaceOrInsert(v)
|
||||
}
|
||||
var got []Item
|
||||
for v := tr.DeleteMax(); v != nil; v = tr.DeleteMax() {
|
||||
got = append(got, v)
|
||||
}
|
||||
// Reverse our list.
|
||||
for i := 0; i < len(got)/2; i++ {
|
||||
got[i], got[len(got)-i-1] = got[len(got)-i-1], got[i]
|
||||
}
|
||||
if want := rang(100); !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAscendRange(t *testing.T) {
|
||||
tr := New(2)
|
||||
for _, v := range perm(100) {
|
||||
tr.ReplaceOrInsert(v)
|
||||
}
|
||||
var got []Item
|
||||
tr.AscendRange(Int(40), Int(60), func(a Item) bool {
|
||||
got = append(got, a)
|
||||
return true
|
||||
})
|
||||
if want := rang(100)[40:60]; !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
got = got[:0]
|
||||
tr.AscendRange(Int(40), Int(60), func(a Item) bool {
|
||||
if a.(Int) > 50 {
|
||||
return false
|
||||
}
|
||||
got = append(got, a)
|
||||
return true
|
||||
})
|
||||
if want := rang(100)[40:51]; !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAscendLessThan(t *testing.T) {
|
||||
tr := New(*btreeDegree)
|
||||
for _, v := range perm(100) {
|
||||
tr.ReplaceOrInsert(v)
|
||||
}
|
||||
var got []Item
|
||||
tr.AscendLessThan(Int(60), func(a Item) bool {
|
||||
got = append(got, a)
|
||||
return true
|
||||
})
|
||||
if want := rang(100)[:60]; !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
got = got[:0]
|
||||
tr.AscendLessThan(Int(60), func(a Item) bool {
|
||||
if a.(Int) > 50 {
|
||||
return false
|
||||
}
|
||||
got = append(got, a)
|
||||
return true
|
||||
})
|
||||
if want := rang(100)[:51]; !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
}
|
||||
|
||||
func TestAscendGreaterOrEqual(t *testing.T) {
|
||||
tr := New(*btreeDegree)
|
||||
for _, v := range perm(100) {
|
||||
tr.ReplaceOrInsert(v)
|
||||
}
|
||||
var got []Item
|
||||
tr.AscendGreaterOrEqual(Int(40), func(a Item) bool {
|
||||
got = append(got, a)
|
||||
return true
|
||||
})
|
||||
if want := rang(100)[40:]; !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
got = got[:0]
|
||||
tr.AscendGreaterOrEqual(Int(40), func(a Item) bool {
|
||||
if a.(Int) > 50 {
|
||||
return false
|
||||
}
|
||||
got = append(got, a)
|
||||
return true
|
||||
})
|
||||
if want := rang(100)[40:51]; !reflect.DeepEqual(got, want) {
|
||||
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
|
||||
}
|
||||
}
|
||||
|
||||
const benchmarkTreeSize = 10000
|
||||
|
||||
func BenchmarkInsert(b *testing.B) {
|
||||
b.StopTimer()
|
||||
insertP := perm(benchmarkTreeSize)
|
||||
b.StartTimer()
|
||||
i := 0
|
||||
for i < b.N {
|
||||
tr := New(*btreeDegree)
|
||||
for _, item := range insertP {
|
||||
tr.ReplaceOrInsert(item)
|
||||
i++
|
||||
if i >= b.N {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkDelete(b *testing.B) {
|
||||
b.StopTimer()
|
||||
insertP := perm(benchmarkTreeSize)
|
||||
removeP := perm(benchmarkTreeSize)
|
||||
b.StartTimer()
|
||||
i := 0
|
||||
for i < b.N {
|
||||
b.StopTimer()
|
||||
tr := New(*btreeDegree)
|
||||
for _, v := range insertP {
|
||||
tr.ReplaceOrInsert(v)
|
||||
}
|
||||
b.StartTimer()
|
||||
for _, item := range removeP {
|
||||
tr.Delete(item)
|
||||
i++
|
||||
if i >= b.N {
|
||||
return
|
||||
}
|
||||
}
|
||||
if tr.Len() > 0 {
|
||||
panic(tr.Len())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkGet(b *testing.B) {
|
||||
b.StopTimer()
|
||||
insertP := perm(benchmarkTreeSize)
|
||||
removeP := perm(benchmarkTreeSize)
|
||||
b.StartTimer()
|
||||
i := 0
|
||||
for i < b.N {
|
||||
b.StopTimer()
|
||||
tr := New(*btreeDegree)
|
||||
for _, v := range insertP {
|
||||
tr.ReplaceOrInsert(v)
|
||||
}
|
||||
b.StartTimer()
|
||||
for _, item := range removeP {
|
||||
tr.Get(item)
|
||||
i++
|
||||
if i >= b.N {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -4,7 +4,7 @@ import (
|
||||
"log"
|
||||
"sync"
|
||||
|
||||
"github.com/google/btree"
|
||||
"github.com/coreos/etcd/Godeps/_workspace/src/github.com/google/btree"
|
||||
)
|
||||
|
||||
type index interface {
|
||||
|
@ -5,7 +5,7 @@ import (
|
||||
"errors"
|
||||
"log"
|
||||
|
||||
"github.com/google/btree"
|
||||
"github.com/coreos/etcd/Godeps/_workspace/src/github.com/google/btree"
|
||||
)
|
||||
|
||||
var (
|
||||
|
Loading…
x
Reference in New Issue
Block a user