*: godep btree

This commit is contained in:
Xiang Li 2015-05-14 17:59:55 -07:00
parent 660fd5e3e1
commit 9d831e3075
9 changed files with 1165 additions and 6 deletions

12
Godeps/Godeps.json generated
View File

@ -20,14 +20,14 @@
"Comment": "v0.2.0-rc1-130-g6aa2da5",
"Rev": "6aa2da5a7a905609c93036b9307185a04a5a84a5"
},
{
"ImportPath": "github.com/coreos/pkg/capnslog",
"Rev": "9d5dd4632f9ece71bdf83d31253593a633e73df5"
},
{
"ImportPath": "github.com/coreos/go-semver/semver",
"Rev": "568e959cd89871e61434c1143528d9162da89ef2"
},
{
"ImportPath": "github.com/coreos/pkg/capnslog",
"Rev": "9d5dd4632f9ece71bdf83d31253593a633e73df5"
},
{
"ImportPath": "github.com/gogo/protobuf/proto",
"Rev": "bc946d07d1016848dfd2507f90f0859c9471681e"
@ -36,6 +36,10 @@
"ImportPath": "github.com/golang/protobuf/proto",
"Rev": "5677a0e3d5e89854c9974e1256839ee23f8233ca"
},
{
"ImportPath": "github.com/google/btree",
"Rev": "cc6329d4279e3f025a53a83c397d2339b5705c45"
},
{
"ImportPath": "github.com/jonboulle/clockwork",
"Rev": "72f9bd7c4e0c2a40055ab3d0f09654f730cce982"

View File

@ -0,0 +1 @@
language: go

202
Godeps/_workspace/src/github.com/google/btree/LICENSE generated vendored Normal file
View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,12 @@
# BTree implementation for Go
![Travis CI Build Status](https://api.travis-ci.org/google/btree.svg?branch=master)
This package provides an in-memory B-Tree implementation for Go, useful as a
an ordered, mutable data structure.
The API is based off of the wonderful
http://godoc.org/github.com/petar/GoLLRB/llrb, and is meant to allow btree to
act as a drop-in replacement for gollrb trees.
See http://godoc.org/github.com/google/btree for documentation.

571
Godeps/_workspace/src/github.com/google/btree/btree.go generated vendored Normal file
View File

@ -0,0 +1,571 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package btree implements in-memory B-Trees of arbitrary degree.
//
// btree implements an in-memory B-Tree for use as an ordered data structure.
// It is not meant for persistent storage solutions.
//
// It has a flatter structure than an equivalent red-black or other binary tree,
// which in some cases yields better memory usage and/or performance.
// See some discussion on the matter here:
// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
// Note, though, that this project is in no way related to the C++ B-Tree
// implmentation written about there.
//
// Within this tree, each node contains a slice of items and a (possibly nil)
// slice of children. For basic numeric values or raw structs, this can cause
// efficiency differences when compared to equivalent C++ template code that
// stores values in arrays within the node:
// * Due to the overhead of storing values as interfaces (each
// value needs to be stored as the value itself, then 2 words for the
// interface pointing to that value and its type), resulting in higher
// memory use.
// * Since interfaces can point to values anywhere in memory, values are
// most likely not stored in contiguous blocks, resulting in a higher
// number of cache misses.
// These issues don't tend to matter, though, when working with strings or other
// heap-allocated structures, since C++-equivalent structures also must store
// pointers and also distribute their values across the heap.
//
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
// widely used ordered tree implementation in the Go ecosystem currently.
// Its functions, therefore, exactly mirror those of
// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
// support storing multiple equivalent values or backwards iteration.
package btree
import (
"fmt"
"io"
"sort"
"strings"
)
// Item represents a single object in the tree.
type Item interface {
// Less tests whether the current item is less than the given argument.
//
// This must provide a strict weak ordering.
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
// hold one of either a or b in the tree).
Less(than Item) bool
}
// ItemIterator allows callers of Ascend* to iterate in-order over portions of
// the tree. When this function returns false, iteration will stop and the
// associated Ascend* function will immediately return.
type ItemIterator func(i Item) bool
// New creates a new B-Tree with the given degree.
//
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
// and 2-4 children).
func New(degree int) *BTree {
if degree <= 1 {
panic("bad degree")
}
return &BTree{
degree: degree,
freelist: make([]*node, 0, 32),
}
}
// items stores items in a node.
type items []Item
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *items) insertAt(index int, item Item) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = item
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *items) removeAt(index int) Item {
item := (*s)[index]
copy((*s)[index:], (*s)[index+1:])
*s = (*s)[:len(*s)-1]
return item
}
// pop removes and returns the last element in the list.
func (s *items) pop() (out Item) {
index := len(*s) - 1
out, *s = (*s)[index], (*s)[:index]
return
}
// find returns the index where the given item should be inserted into this
// list. 'found' is true if the item already exists in the list at the given
// index.
func (s items) find(item Item) (index int, found bool) {
i := sort.Search(len(s), func(i int) bool {
return item.Less(s[i])
})
if i > 0 && !s[i-1].Less(item) {
return i - 1, true
}
return i, false
}
// children stores child nodes in a node.
type children []*node
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *children) insertAt(index int, n *node) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = n
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *children) removeAt(index int) *node {
n := (*s)[index]
copy((*s)[index:], (*s)[index+1:])
*s = (*s)[:len(*s)-1]
return n
}
// pop removes and returns the last element in the list.
func (s *children) pop() (out *node) {
index := len(*s) - 1
out, *s = (*s)[index], (*s)[:index]
return
}
// node is an internal node in a tree.
//
// It must at all times maintain the invariant that either
// * len(children) == 0, len(items) unconstrained
// * len(children) == len(items) + 1
type node struct {
items items
children children
t *BTree
}
// split splits the given node at the given index. The current node shrinks,
// and this function returns the item that existed at that index and a new node
// containing all items/children after it.
func (n *node) split(i int) (Item, *node) {
item := n.items[i]
next := n.t.newNode()
next.items = append(next.items, n.items[i+1:]...)
n.items = n.items[:i]
if len(n.children) > 0 {
next.children = append(next.children, n.children[i+1:]...)
n.children = n.children[:i+1]
}
return item, next
}
// maybeSplitChild checks if a child should be split, and if so splits it.
// Returns whether or not a split occurred.
func (n *node) maybeSplitChild(i, maxItems int) bool {
if len(n.children[i].items) < maxItems {
return false
}
first := n.children[i]
item, second := first.split(maxItems / 2)
n.items.insertAt(i, item)
n.children.insertAt(i+1, second)
return true
}
// insert inserts an item into the subtree rooted at this node, making sure
// no nodes in the subtree exceed maxItems items. Should an equivalent item be
// be found/replaced by insert, it will be returned.
func (n *node) insert(item Item, maxItems int) Item {
i, found := n.items.find(item)
if found {
out := n.items[i]
n.items[i] = item
return out
}
if len(n.children) == 0 {
n.items.insertAt(i, item)
return nil
}
if n.maybeSplitChild(i, maxItems) {
inTree := n.items[i]
switch {
case item.Less(inTree):
// no change, we want first split node
case inTree.Less(item):
i++ // we want second split node
default:
out := n.items[i]
n.items[i] = item
return out
}
}
return n.children[i].insert(item, maxItems)
}
// get finds the given key in the subtree and returns it.
func (n *node) get(key Item) Item {
i, found := n.items.find(key)
if found {
return n.items[i]
} else if len(n.children) > 0 {
return n.children[i].get(key)
}
return nil
}
// toRemove details what item to remove in a node.remove call.
type toRemove int
const (
removeItem toRemove = iota // removes the given item
removeMin // removes smallest item in the subtree
removeMax // removes largest item in the subtree
)
// remove removes an item from the subtree rooted at this node.
func (n *node) remove(item Item, minItems int, typ toRemove) Item {
var i int
var found bool
switch typ {
case removeMax:
if len(n.children) == 0 {
return n.items.pop()
}
i = len(n.items)
case removeMin:
if len(n.children) == 0 {
return n.items.removeAt(0)
}
i = 0
case removeItem:
i, found = n.items.find(item)
if len(n.children) == 0 {
if found {
return n.items.removeAt(i)
}
return nil
}
default:
panic("invalid type")
}
// If we get to here, we have children.
child := n.children[i]
if len(child.items) <= minItems {
return n.growChildAndRemove(i, item, minItems, typ)
}
// Either we had enough items to begin with, or we've done some
// merging/stealing, because we've got enough now and we're ready to return
// stuff.
if found {
// The item exists at index 'i', and the child we've selected can give us a
// predecessor, since if we've gotten here it's got > minItems items in it.
out := n.items[i]
// We use our special-case 'remove' call with typ=maxItem to pull the
// predecessor of item i (the rightmost leaf of our immediate left child)
// and set it into where we pulled the item from.
n.items[i] = child.remove(nil, minItems, removeMax)
return out
}
// Final recursive call. Once we're here, we know that the item isn't in this
// node and that the child is big enough to remove from.
return child.remove(item, minItems, typ)
}
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
// item from it while keeping it at minItems, then calls remove to actually
// remove it.
//
// Most documentation says we have to do two sets of special casing:
// 1) item is in this node
// 2) item is in child
// In both cases, we need to handle the two subcases:
// A) node has enough values that it can spare one
// B) node doesn't have enough values
// For the latter, we have to check:
// a) left sibling has node to spare
// b) right sibling has node to spare
// c) we must merge
// To simplify our code here, we handle cases #1 and #2 the same:
// If a node doesn't have enough items, we make sure it does (using a,b,c).
// We then simply redo our remove call, and the second time (regardless of
// whether we're in case 1 or 2), we'll have enough items and can guarantee
// that we hit case A.
func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
child := n.children[i]
if i > 0 && len(n.children[i-1].items) > minItems {
// Steal from left child
stealFrom := n.children[i-1]
stolenItem := stealFrom.items.pop()
child.items.insertAt(0, n.items[i-1])
n.items[i-1] = stolenItem
if len(stealFrom.children) > 0 {
child.children.insertAt(0, stealFrom.children.pop())
}
} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
// steal from right child
stealFrom := n.children[i+1]
stolenItem := stealFrom.items.removeAt(0)
child.items = append(child.items, n.items[i])
n.items[i] = stolenItem
if len(stealFrom.children) > 0 {
child.children = append(child.children, stealFrom.children.removeAt(0))
}
} else {
if i >= len(n.items) {
i--
child = n.children[i]
}
// merge with right child
mergeItem := n.items.removeAt(i)
mergeChild := n.children.removeAt(i + 1)
child.items = append(child.items, mergeItem)
child.items = append(child.items, mergeChild.items...)
child.children = append(child.children, mergeChild.children...)
n.t.freeNode(mergeChild)
}
return n.remove(item, minItems, typ)
}
// iterate provides a simple method for iterating over elements in the tree.
// It could probably use some work to be extra-efficient (it calls from() a
// little more than it should), but it works pretty well for now.
//
// It requires that 'from' and 'to' both return true for values we should hit
// with the iterator. It should also be the case that 'from' returns true for
// values less than or equal to values 'to' returns true for, and 'to'
// returns true for values greater than or equal to those that 'from'
// does.
func (n *node) iterate(from, to func(Item) bool, iter ItemIterator) bool {
for i, item := range n.items {
if !from(item) {
continue
}
if len(n.children) > 0 && !n.children[i].iterate(from, to, iter) {
return false
}
if !to(item) {
return false
}
if !iter(item) {
return false
}
}
if len(n.children) > 0 {
return n.children[len(n.children)-1].iterate(from, to, iter)
}
return true
}
// Used for testing/debugging purposes.
func (n *node) print(w io.Writer, level int) {
fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
for _, c := range n.children {
c.print(w, level+1)
}
}
// BTree is an implementation of a B-Tree.
//
// BTree stores Item instances in an ordered structure, allowing easy insertion,
// removal, and iteration.
//
// Write operations are not safe for concurrent mutation by multiple
// goroutines, but Read operations are.
type BTree struct {
degree int
length int
root *node
freelist []*node
}
// maxItems returns the max number of items to allow per node.
func (t *BTree) maxItems() int {
return t.degree*2 - 1
}
// minItems returns the min number of items to allow per node (ignored for the
// root node).
func (t *BTree) minItems() int {
return t.degree - 1
}
func (t *BTree) newNode() (n *node) {
index := len(t.freelist) - 1
if index < 0 {
return &node{t: t}
}
t.freelist, n = t.freelist[:index], t.freelist[index]
return
}
func (t *BTree) freeNode(n *node) {
if len(t.freelist) < cap(t.freelist) {
for i := range n.items {
n.items[i] = nil // clear to allow GC
}
n.items = n.items[:0]
for i := range n.children {
n.children[i] = nil // clear to allow GC
}
n.children = n.children[:0]
t.freelist = append(t.freelist, n)
}
}
// ReplaceOrInsert adds the given item to the tree. If an item in the tree
// already equals the given one, it is removed from the tree and returned.
// Otherwise, nil is returned.
//
// nil cannot be added to the tree (will panic).
func (t *BTree) ReplaceOrInsert(item Item) Item {
if item == nil {
panic("nil item being added to BTree")
}
if t.root == nil {
t.root = t.newNode()
t.root.items = append(t.root.items, item)
t.length++
return nil
} else if len(t.root.items) >= t.maxItems() {
item2, second := t.root.split(t.maxItems() / 2)
oldroot := t.root
t.root = t.newNode()
t.root.items = append(t.root.items, item2)
t.root.children = append(t.root.children, oldroot, second)
}
out := t.root.insert(item, t.maxItems())
if out == nil {
t.length++
}
return out
}
// Delete removes an item equal to the passed in item from the tree, returning
// it. If no such item exists, returns nil.
func (t *BTree) Delete(item Item) Item {
return t.deleteItem(item, removeItem)
}
// DeleteMin removes the smallest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMin() Item {
return t.deleteItem(nil, removeMin)
}
// DeleteMax removes the largest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMax() Item {
return t.deleteItem(nil, removeMax)
}
func (t *BTree) deleteItem(item Item, typ toRemove) Item {
if t.root == nil || len(t.root.items) == 0 {
return nil
}
out := t.root.remove(item, t.minItems(), typ)
if len(t.root.items) == 0 && len(t.root.children) > 0 {
oldroot := t.root
t.root = t.root.children[0]
t.freeNode(oldroot)
}
if out != nil {
t.length--
}
return out
}
// AscendRange calls the iterator for every value in the tree within the range
// [greaterOrEqual, lessThan), until iterator returns false.
func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(
func(a Item) bool { return !a.Less(greaterOrEqual) },
func(a Item) bool { return a.Less(lessThan) },
iterator)
}
// AscendLessThan calls the iterator for every value in the tree within the range
// [first, pivot), until iterator returns false.
func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(
func(a Item) bool { return true },
func(a Item) bool { return a.Less(pivot) },
iterator)
}
// AscendGreaterOrEqual calls the iterator for every value in the tree within
// the range [pivot, last], until iterator returns false.
func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(
func(a Item) bool { return !a.Less(pivot) },
func(a Item) bool { return true },
iterator)
}
// Ascend calls the iterator for every value in the tree within the range
// [first, last], until iterator returns false.
func (t *BTree) Ascend(iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(
func(a Item) bool { return true },
func(a Item) bool { return true },
iterator)
}
// Get looks for the key item in the tree, returning it. It returns nil if
// unable to find that item.
func (t *BTree) Get(key Item) Item {
if t.root == nil {
return nil
}
return t.root.get(key)
}
// Has returns true if the given key is in the tree.
func (t *BTree) Has(key Item) bool {
return t.Get(key) != nil
}
// Len returns the number of items currently in the tree.
func (t *BTree) Len() int {
return t.length
}
// Int implements the Item interface for integers.
type Int int
// Less returns true if int(a) < int(b).
func (a Int) Less(b Item) bool {
return a < b.(Int)
}

View File

@ -0,0 +1,76 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build ignore
// This binary compares memory usage between btree and gollrb.
package main
import (
"flag"
"fmt"
"math/rand"
"runtime"
"time"
"github.com/coreos/etcd/Godeps/_workspace/src/github.com/google/btree"
"github.com/petar/GoLLRB/llrb"
)
var (
size = flag.Int("size", 1000000, "size of the tree to build")
degree = flag.Int("degree", 8, "degree of btree")
gollrb = flag.Bool("llrb", false, "use llrb instead of btree")
)
func main() {
flag.Parse()
vals := rand.Perm(*size)
var t, v interface{}
v = vals
var stats runtime.MemStats
for i := 0; i < 10; i++ {
runtime.GC()
}
fmt.Println("-------- BEFORE ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
start := time.Now()
if *gollrb {
tr := llrb.New()
for _, v := range vals {
tr.ReplaceOrInsert(llrb.Int(v))
}
t = tr // keep it around
} else {
tr := btree.New(*degree)
for _, v := range vals {
tr.ReplaceOrInsert(btree.Int(v))
}
t = tr // keep it around
}
fmt.Printf("%v inserts in %v\n", *size, time.Since(start))
fmt.Println("-------- AFTER ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
for i := 0; i < 10; i++ {
runtime.GC()
}
fmt.Println("-------- AFTER GC ----------")
runtime.ReadMemStats(&stats)
fmt.Printf("%+v\n", stats)
if t == v {
fmt.Println("to make sure vals and tree aren't GC'd")
}
}

View File

@ -0,0 +1,293 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package btree
import (
"flag"
"fmt"
"math/rand"
"reflect"
"testing"
"time"
)
func init() {
seed := time.Now().Unix()
fmt.Println(seed)
rand.Seed(seed)
}
// perm returns a random permutation of n Int items in the range [0, n).
func perm(n int) (out []Item) {
for _, v := range rand.Perm(n) {
out = append(out, Int(v))
}
return
}
// rang returns an ordered list of Int items in the range [0, n).
func rang(n int) (out []Item) {
for i := 0; i < n; i++ {
out = append(out, Int(i))
}
return
}
// all extracts all items from a tree in order as a slice.
func all(t *BTree) (out []Item) {
t.Ascend(func(a Item) bool {
out = append(out, a)
return true
})
return
}
var btreeDegree = flag.Int("degree", 32, "B-Tree degree")
func TestBTree(t *testing.T) {
tr := New(*btreeDegree)
const treeSize = 10000
for i := 0; i < 10; i++ {
for _, item := range perm(treeSize) {
if x := tr.ReplaceOrInsert(item); x != nil {
t.Fatal("insert found item", item)
}
}
for _, item := range perm(treeSize) {
if x := tr.ReplaceOrInsert(item); x == nil {
t.Fatal("insert didn't find item", item)
}
}
got := all(tr)
want := rang(treeSize)
if !reflect.DeepEqual(got, want) {
t.Fatalf("mismatch:\n got: %v\nwant: %v", got, want)
}
for _, item := range perm(treeSize) {
if x := tr.Delete(item); x == nil {
t.Fatalf("didn't find %v", item)
}
}
if got = all(tr); len(got) > 0 {
t.Fatalf("some left!: %v", got)
}
}
}
func ExampleBTree() {
tr := New(*btreeDegree)
for i := Int(0); i < 10; i++ {
tr.ReplaceOrInsert(i)
}
fmt.Println("len: ", tr.Len())
fmt.Println("get3: ", tr.Get(Int(3)))
fmt.Println("get100: ", tr.Get(Int(100)))
fmt.Println("del4: ", tr.Delete(Int(4)))
fmt.Println("del100: ", tr.Delete(Int(100)))
fmt.Println("replace5: ", tr.ReplaceOrInsert(Int(5)))
fmt.Println("replace100:", tr.ReplaceOrInsert(Int(100)))
fmt.Println("delmin: ", tr.DeleteMin())
fmt.Println("delmax: ", tr.DeleteMax())
fmt.Println("len: ", tr.Len())
// Output:
// len: 10
// get3: 3
// get100: <nil>
// del4: 4
// del100: <nil>
// replace5: 5
// replace100: <nil>
// delmin: 0
// delmax: 100
// len: 8
}
func TestDeleteMin(t *testing.T) {
tr := New(3)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
for v := tr.DeleteMin(); v != nil; v = tr.DeleteMin() {
got = append(got, v)
}
if want := rang(100); !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestDeleteMax(t *testing.T) {
tr := New(3)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
for v := tr.DeleteMax(); v != nil; v = tr.DeleteMax() {
got = append(got, v)
}
// Reverse our list.
for i := 0; i < len(got)/2; i++ {
got[i], got[len(got)-i-1] = got[len(got)-i-1], got[i]
}
if want := rang(100); !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestAscendRange(t *testing.T) {
tr := New(2)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendRange(Int(40), Int(60), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang(100)[40:60]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.AscendRange(Int(40), Int(60), func(a Item) bool {
if a.(Int) > 50 {
return false
}
got = append(got, a)
return true
})
if want := rang(100)[40:51]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestAscendLessThan(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendLessThan(Int(60), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang(100)[:60]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.AscendLessThan(Int(60), func(a Item) bool {
if a.(Int) > 50 {
return false
}
got = append(got, a)
return true
})
if want := rang(100)[:51]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
func TestAscendGreaterOrEqual(t *testing.T) {
tr := New(*btreeDegree)
for _, v := range perm(100) {
tr.ReplaceOrInsert(v)
}
var got []Item
tr.AscendGreaterOrEqual(Int(40), func(a Item) bool {
got = append(got, a)
return true
})
if want := rang(100)[40:]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
got = got[:0]
tr.AscendGreaterOrEqual(Int(40), func(a Item) bool {
if a.(Int) > 50 {
return false
}
got = append(got, a)
return true
})
if want := rang(100)[40:51]; !reflect.DeepEqual(got, want) {
t.Fatalf("ascendrange:\n got: %v\nwant: %v", got, want)
}
}
const benchmarkTreeSize = 10000
func BenchmarkInsert(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
b.StartTimer()
i := 0
for i < b.N {
tr := New(*btreeDegree)
for _, item := range insertP {
tr.ReplaceOrInsert(item)
i++
if i >= b.N {
return
}
}
}
}
func BenchmarkDelete(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
removeP := perm(benchmarkTreeSize)
b.StartTimer()
i := 0
for i < b.N {
b.StopTimer()
tr := New(*btreeDegree)
for _, v := range insertP {
tr.ReplaceOrInsert(v)
}
b.StartTimer()
for _, item := range removeP {
tr.Delete(item)
i++
if i >= b.N {
return
}
}
if tr.Len() > 0 {
panic(tr.Len())
}
}
}
func BenchmarkGet(b *testing.B) {
b.StopTimer()
insertP := perm(benchmarkTreeSize)
removeP := perm(benchmarkTreeSize)
b.StartTimer()
i := 0
for i < b.N {
b.StopTimer()
tr := New(*btreeDegree)
for _, v := range insertP {
tr.ReplaceOrInsert(v)
}
b.StartTimer()
for _, item := range removeP {
tr.Get(item)
i++
if i >= b.N {
return
}
}
}
}

View File

@ -4,7 +4,7 @@ import (
"log"
"sync"
"github.com/google/btree"
"github.com/coreos/etcd/Godeps/_workspace/src/github.com/google/btree"
)
type index interface {

View File

@ -5,7 +5,7 @@ import (
"errors"
"log"
"github.com/google/btree"
"github.com/coreos/etcd/Godeps/_workspace/src/github.com/google/btree"
)
var (