compactor: adjust interval for period <1-hour

This commit is contained in:
Iwasaki Yudai 2018-03-22 16:34:59 -07:00 committed by Gyuho Lee
parent e029de320a
commit d70a218b19
2 changed files with 143 additions and 57 deletions

View File

@ -61,75 +61,129 @@ func newPeriodic(clock clockwork.Clock, h time.Duration, rg RevGetter, c Compact
return t return t
} }
// periodDivisor divides Periodic.period in into checkCompactInterval duration
const periodDivisor = 10
// Run runs periodic compactor.
func (t *Periodic) Run() { func (t *Periodic) Run() {
interval := t.period / time.Duration(periodDivisor) fetchInterval := t.getFetchInterval()
retryInterval := t.getRetryInterval()
retentions := int(t.period/fetchInterval) + 1 // number of revs to keep for t.period
notify := make(chan struct{}, 1)
// periodically updates t.revs and notify to the other goroutine
go func() { go func() {
initialWait := t.clock.Now()
for { for {
t.revs = append(t.revs, t.rg.Rev()) rev := t.rg.Rev()
t.mu.Lock()
t.revs = append(t.revs, rev)
if len(t.revs) > retentions {
t.revs = t.revs[1:] // t.revs[0] is always the rev at t.period ago
}
t.mu.Unlock()
select {
case notify <- struct{}{}:
default:
// compaction can take time more than interval
}
select { select {
case <-t.ctx.Done(): case <-t.ctx.Done():
return return
case <-t.clock.After(interval): case <-t.clock.After(fetchInterval):
}
}
}()
// run compaction triggered by the other goroutine thorough the notify channel
// or internal periodic retry
go func() {
var lastCompactedRev int64
for {
select {
case <-t.ctx.Done():
return
case <-notify:
// from the other goroutine
case <-t.clock.After(retryInterval):
// for retry
// when t.rev is not updated, this event will be ignored later,
// so we don't need to think about race with <-notify.
}
t.mu.Lock() t.mu.Lock()
p := t.paused p := t.paused
rev := t.revs[0]
len := len(t.revs)
t.mu.Unlock() t.mu.Unlock()
if p { if p {
continue continue
} }
}
// wait up to initial given period // it's too early to start working
if t.clock.Now().Sub(initialWait) < t.period { if len != retentions {
continue continue
} }
rev, remaining := t.getRev() // if t.revs is not updated, we can ignore the event.
if rev < 0 { // it's not the first time to try comapction in this interval.
if rev == lastCompactedRev {
continue continue
} }
plog.Noticef("Starting auto-compaction at revision %d (retention: %v)", rev, t.period) plog.Noticef("Starting auto-compaction at revision %d (retention: %v)", rev, t.period)
_, err := t.c.Compact(t.ctx, &pb.CompactionRequest{Revision: rev}) _, err := t.c.Compact(t.ctx, &pb.CompactionRequest{Revision: rev})
if err == nil || err == mvcc.ErrCompacted { if err == nil || err == mvcc.ErrCompacted {
// move to next sliding window
t.revs = remaining
plog.Noticef("Finished auto-compaction at revision %d", rev) plog.Noticef("Finished auto-compaction at revision %d", rev)
lastCompactedRev = rev
} else { } else {
plog.Noticef("Failed auto-compaction at revision %d (%v)", rev, err) plog.Noticef("Failed auto-compaction at revision %d (%v)", rev, err)
plog.Noticef("Retry after %v", interval) plog.Noticef("Retry after %s", retryInterval)
} }
} }
}() }()
} }
// Stop stops periodic compactor. // if given compaction period x is <1-hour, compact every x duration.
// (e.g. --auto-compaction-mode 'periodic' --auto-compaction-retention='10m', then compact every 10-minute)
// if given compaction period x is >1-hour, compact every hour.
// (e.g. --auto-compaction-mode 'periodic' --auto-compaction-retention='2h', then compact every 1-hour)
func (t *Periodic) getFetchInterval() time.Duration {
itv := t.period
if itv > time.Hour {
itv = time.Hour
}
return itv
}
const retryDivisor = 10
func (t *Periodic) getRetryInterval() time.Duration {
itv := t.period / retryDivisor
// we don't want to too aggressive retries
// and also jump between 6-minute through 60-minute
if itv < (6 * time.Minute) { // t.period is less than hour
// if t.period is less than 6-minute,
// retry interval is t.period.
// if we divide byretryDivisor, it's too aggressive
if t.period < 6*time.Minute {
itv = t.period
} else {
itv = 6 * time.Minute
}
}
return itv
}
func (t *Periodic) Stop() { func (t *Periodic) Stop() {
t.cancel() t.cancel()
} }
// Pause pauses periodic compactor.
func (t *Periodic) Pause() { func (t *Periodic) Pause() {
t.mu.Lock() t.mu.Lock()
defer t.mu.Unlock() defer t.mu.Unlock()
t.paused = true t.paused = true
} }
// Resume resumes periodic compactor.
func (t *Periodic) Resume() { func (t *Periodic) Resume() {
t.mu.Lock() t.mu.Lock()
defer t.mu.Unlock() defer t.mu.Unlock()
t.paused = false t.paused = false
} }
func (t *Periodic) getRev() (int64, []int64) {
i := len(t.revs) - periodDivisor
if i < 0 {
return -1, t.revs
}
return t.revs[i], t.revs[i+1:]
}

View File

@ -25,7 +25,7 @@ import (
"github.com/jonboulle/clockwork" "github.com/jonboulle/clockwork"
) )
func TestPeriodic(t *testing.T) { func TestPeriodicHourly(t *testing.T) {
retentionHours := 2 retentionHours := 2
retentionDuration := time.Duration(retentionHours) * time.Hour retentionDuration := time.Duration(retentionHours) * time.Hour
@ -36,32 +36,60 @@ func TestPeriodic(t *testing.T) {
tb.Run() tb.Run()
defer tb.Stop() defer tb.Stop()
checkCompactInterval := retentionDuration / time.Duration(periodDivisor) // simulate 5 hours
n := periodDivisor
// simulate 5 hours worth of intervals. for i := 0; i < 5; i++ {
for i := 0; i < n/retentionHours*5; i++ {
rg.Wait(1) rg.Wait(1)
fc.Advance(checkCompactInterval) fc.Advance(time.Hour)
// compaction doesn't happen til 2 hours elapses. // compaction doesn't happen til 2 hours elapses.
if i < n { if i < retentionHours {
continue continue
} }
// after 2 hours, compaction happens at every checkCompactInterval. // after 2 hours, compaction happens at every interval.
// at i = 3, t.revs = [1(2h-ago,T=0h), 2(1h-ago,T=1h), 3(now,T=2h)] (len=3) (rev starts from 1)
a, err := compactable.Wait(1) a, err := compactable.Wait(1)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
expectedRevision := int64(i + 1 - n) expectedRevision := int64(i - 1)
if !reflect.DeepEqual(a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision}) { if !reflect.DeepEqual(a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision}) {
t.Errorf("compact request = %v, want %v", a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision}) t.Errorf("compact request = %v, want %v", a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision})
} }
} }
}
// unblock the rev getter, so we can stop the compactor routine. func TestPeriodicMinutes(t *testing.T) {
_, err := rg.Wait(1) retentionMinutes := 23
retentionDuration := time.Duration(retentionMinutes) * time.Minute
fc := clockwork.NewFakeClock()
rg := &fakeRevGetter{testutil.NewRecorderStream(), 0}
compactable := &fakeCompactable{testutil.NewRecorderStream()}
tb := newPeriodic(fc, retentionDuration, rg, compactable)
tb.Run()
defer tb.Stop()
// simulate 115 (23 * 5) minutes
for i := 0; i < 5; i++ {
rg.Wait(1)
fc.Advance(retentionDuration)
// notting happens at T=0
if i == 0 {
continue
}
// from T=23m (i=1), compaction happens at every interval
a, err := compactable.Wait(1)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
expectedRevision := int64(i)
if !reflect.DeepEqual(a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision}) {
t.Errorf("compact request = %v, want %v", a[0].Params[0], &pb.CompactionRequest{Revision: expectedRevision})
}
}
} }
func TestPeriodicPause(t *testing.T) { func TestPeriodicPause(t *testing.T) {
@ -75,13 +103,17 @@ func TestPeriodicPause(t *testing.T) {
tb.Pause() tb.Pause()
// tb will collect 3 hours of revisions but not compact since paused // tb will collect 3 hours of revisions but not compact since paused
checkCompactInterval := retentionDuration / time.Duration(periodDivisor) // T=0
n := periodDivisor rg.Wait(1) // t.revs = [1]
for i := 0; i < 3*n; i++ { fc.Advance(time.Hour)
rg.Wait(1) // T=1h
fc.Advance(checkCompactInterval) rg.Wait(1) // t.revs = [1, 2]
} fc.Advance(time.Hour)
// tb ends up waiting for the clock // T=2h
rg.Wait(1) // t.revs = [2, 3]
fc.Advance(time.Hour)
// T=3h
rg.Wait(1) // t.revs = [3, 4]
select { select {
case a := <-compactable.Chan(): case a := <-compactable.Chan():
@ -92,15 +124,15 @@ func TestPeriodicPause(t *testing.T) {
// tb resumes to being blocked on the clock // tb resumes to being blocked on the clock
tb.Resume() tb.Resume()
// unblock clock, will kick off a compaction at hour 3:06 // unblock clock, will kick off a compaction at T=3h6m by retry
rg.Wait(1) fc.Advance(time.Minute * 6)
fc.Advance(checkCompactInterval) // T=3h6m
a, err := compactable.Wait(1) a, err := compactable.Wait(1)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
// compact the revision from hour 2:06 // compact the revision from T=3h
wreq := &pb.CompactionRequest{Revision: int64(1 + 2*n + 1)} wreq := &pb.CompactionRequest{Revision: int64(3)}
if !reflect.DeepEqual(a[0].Params[0], wreq) { if !reflect.DeepEqual(a[0].Params[0], wreq) {
t.Errorf("compact request = %v, want %v", a[0].Params[0], wreq.Revision) t.Errorf("compact request = %v, want %v", a[0].Params[0], wreq.Revision)
} }