The suggested pattern for Raft proposals is that they be retried
periodically until they succeed. This turns out to be an issue
when a leader cannot commit entries because the leader will continue
to append re-proposed entries to its log without committing anything.
This can result in the uncommitted tail of a leader's log growing
without bound until it is able to commit entries.
This change add a safeguard to protect against this case where a
leader's log can grow without bound during loss of quorum scenarios.
It does so by introducing a new, optional ``MaxUncommittedEntriesSize
configuration. This config limits the max aggregate size of uncommitted
entries that may be appended to a leader's log. Once this limit
is exceeded, proposals will begin to return ErrProposalDropped
errors.
See cockroachdb/cockroach#27772
In #9982, a mechanism to limit the size of `CommittedEntries` was
introduced. The way this mechanism worked was that it would load
applicable entries (passing the max size hint) and would emit a
`HardState` whose commit index was truncated to match the limitation
applied to the entries. Unfortunately, this was subtly incorrect
when the user-provided `Entries` implementation didn't exactly
match what Raft uses internally. Depending on whether a `Node` or
a `RawNode` was used, this would either lead to regressing the
HardState's commit index or outright forgetting to apply entries,
respectively.
Asking implementers to precisely match the Raft size limitation
semantics was considered but looks like a bad idea as it puts
correctness squarely in the hands of downstream users. Instead, this
PR removes the truncation of `HardState` when limiting is active
and tracks the applied index separately. This removes the old
paradigm (that the previous code tried to work around) that the
client will always apply all the way to the commit index, which
isn't true when commit entries are paginated.
See [1] for more on the discovery of this bug (CockroachDB's
implementation of `Entries` returns one more entry than Raft's when the
size limit hits).
[1]: https://github.com/cockroachdb/cockroach/issues/28918#issuecomment-418174448
Scanning the uncommitted portion of the raft log to determine whether
there are any pending config changes can be expensive. In
cockroachdb/cockroach#18601, we've seen that a new leader can spend so
much time scanning its log post-election that it fails to send
its first heartbeats in time to prevent a second election from
starting immediately.
Instead of tracking whether a pending config change exists with a
boolean, this commit tracks the latest log index at which a pending
config change *could* exist. This is a less expensive solution to
the problem, and the impact of false positives should be minimal since
a newly-elected leader should be able to quickly commit the tail of
its log.
TickQuiesced allows the caller to support "quiesced" Raft groups which
do not perform periodic heartbeats and elections. This is useful in a
system with thousands of Raft groups where these periodic operations can
be overwhelming in an otherwise idle system.
It might seem possible to avoid advancing the logical clock at all in
such Raft groups, but doing so has an interaction with the CheckQuorum
functionality. If a follower is not quiesced while the leader is the
follower can call an election that will fail because the leader's lease
has not expired (electionElapsed < electionTimeout). The next time the
leader sends a heartbeat to this follower the follower will see that the
heartbeat is from a previous term and respond with a MsgAppResp. This in
turn will cause the leader to step down and become a follower even
though there isn't a leader in the group. By allowing the leader's
logical clock to advance via TickQuiesced, the leader won't reject the
election and there will be a smooth transfer of leadership to the
follower.