The code doing so was undertested and buggy: it would launch multiple
attempts to transition out when the conf change was not the last element
in the log.
This commit fixes the problem and adds a regression test. It also
reworks the code to handle a former untested edge case, in which the
auto-transition append is refused. This can't happen any more with the
current version of the code because this proposal has size zero and is
special cased in increaseUncommittedSize. Last but not least, the
auto-leave proposal now also bumps pendingConfIndex, which was not done
previously due to an oversight.
It has often been tedious to test the interactions between multi-member
Raft groups, especially when many steps were required to reach a certain
scenario. Often, this boilerplate was as boring as it is hard to write
and hard to maintain, making it attractive to resort to shortcuts
whenever possible, which in turn tended to undercut how meaningful and
maintainable the tests ended up being - that is, if the tests were even
written, which sometimes they weren't.
This change introduces a datadriven framework specifically for testing
deterministically the interaction between multiple members of a raft group
with the goal of reducing the friction for writing these tests to near
zero.
In the near term, this will be used to add thorough testing for joint
consensus (which is already available today, but wildly undertested),
but just converting an existing test into this framework has shown that
the concise representation and built-in inspection of log messages
highlights unexpected behavior much more readily than the previous unit
tests did (the test in question is `snapshot_succeed_via_app_resp`; the
reader is invited to compare the old and new version of it).
The main building block is `InteractionEnv`, which holds on to the state
of the whole system and exposes various relevant methods for
manipulating it, including but not limited to adding nodes, delivering
and dropping messages, and proposing configuration changes. All of this
is extensible so that in the future I hope to use it to explore the
phenomena discussed in
https://github.com/etcd-io/etcd/issues/7625#issuecomment-488798263
which requires injecting appropriate "crash points" in the Ready
handling loop. Discussions of the "what if X happened in state Y"
can quickly be made concrete by "scripting up an interaction test".
Additionally, this framework is intentionally not kept internal to the
raft package.. Though this is in its infancy, a goal is that it should
be possible for a suite of interaction tests to allow applications to
validate that their Storage implementation behaves accordingly, simply
by running a raft-provided interaction suite against their Storage.
This change introduces joint quorums by changing the Node and RawNode
API to accept pb.ConfChangeV2 (on top of pb.ConfChange).
pb.ConfChange continues to work as today: it allows carrying out a
single configuration change. A pb.ConfChange proposal gets added to
the Raft log as such and is thus also observed by the app during Ready
handling, and fed back to ApplyConfChange.
ConfChangeV2 allows joint configuration changes but will continue to
carry out configuration changes in "one phase" (i.e. without ever
entering a joint config) when this is possible.