Computing the snapshot file path is error prone; snapshot recovery was
constructing file paths missing a path separator so the snapshot
would never be loaded. Instead, refactor the backend path handling
to use helper functions where possible.
raftNode was being initialized in start(), which was causing
hangs when trying to stop the etcd server since the stop channel
would not be initialized in time for the stop call. Instead,
setup non-configurable bits in a constructor.
Fixes#7668
Fix https://github.com/coreos/etcd/issues/7470.
This patch removes unnecessary term look-up in
'createMergedSnapshotMessage', which can trigger panic
if raft entry at etcdProgress.appliedi got compacted
by subsequent 'MsgSnap' messages--if a follower is
being (in this case, network latency spikes), it
could receive subsequent 'MsgSnap' requests from leader.
etcd server-side 'applyAll' routine and raft's Ready
processing routine becomes asynchronous after raft
entries are persisted. And given that raft Ready routine
takes less time to finish, it is possible that second
'MsgSnap' is being handled, while the slow 'applyAll'
is still processing the first(old) 'MsgSnap'. Then raft
Ready routine can compact the log entries at future
index to 'applyAll'. That is how 'createMergedSnapshotMessage'
tried to look up raft term with outdated etcdProgress.appliedi.
Signed-off-by: Gyu-Ho Lee <gyuhox@gmail.com>
All outstanding goroutines now go into the etcdserver waitgroup. goroutines are
shutdown with a "stopping" channel which is closed when the run() goroutine
shutsdown. The done channel will only close once the waitgroup is totally cleared.
Migrate command accepts a datadir and an optional user-provided
transformer function that transform v2 keys to v2 keys.
Migrate command then builds a v3 backend state based on the existing
v2 keys and the output of the transformer function.
We want the KV to support recovering from backend to avoid
additional pointer swap. Or we have to do coordination between
etcdserver and API layer, since API layer might have access to
kv pointer and use a closed kv.
Provides two implementations of Recorder-- one that is non-blocking
like the original version and one that provides a blocking channel
to avoid busy waiting or racing in tests when no other synchronization
is available.