Make it less verbose by omitting the values for the steady state.
Also rearrange the order so that information that is typically more
relevant is printed first.
At the time of writing, we don't allow configuration changes to change
voters to learners directly, but note that a snapshot may compress
multiple changes to the configuration into one: the voter could have
been removed, then readded as a learner and the snapshot reflects both
changes. In that case, a voter receives a snapshot telling it that it is
now a learner. In fact, the node has to accept that snapshot, or it is
permanently cut off from the Raft log.
I think this just wasn't realized in the original work, but this is just
my guess since there generally is very little rationale on the various
decisions made. I also generally haven't been able to figure out whether
the decision to prevent voters from becoming learners without first
having been removed was motivated by some particular concern, or if it
just wasn't deemed necessary. I suspect it is the latter because
demoting a voter seems perfectly safe.
See https://github.com/etcd-io/etcd/pull/8751#issuecomment-342028091.
This is helpful to quickly print the configuration log messages without
having to specify Voters and Learners separately.
It will also come in handy for joint quorums because it allows holding
on to voters and learners as a unit, which is useful for unit testing.
Put all the logic related to applying a configuration change in one
place in preparation for adding joint consensus.
This inspired various TODOs.
I had to rewrite TestSnapshotSucceedViaAppResp since it was relying
on a snapshot applied to the leader, which is now prevented.
Mechanically extract `progressTracker`, `Progress`, and `inflights`
to their own package named `tracker`. Add lots of comments in the
progress, and take the opportunity to rename and clarify various
fields.
To ease a future transition into joint quorums, this commit removes the
previous "ad-hoc" majority-based quorum and vote computations with that
introduced in the `raft/quorum` package.
More specifically, the progressTracker now uses a quorum.JointConfig for
which the "second" majority quorum is always empty; in this case the
quorum behaves like the one quorum.MajorityConfig that is actually
present. Or, more briefly, this change is a no-op, but it will take the
busywork out of actually starting to make use of joint quorums in the
future.
On a side node, I suspect that this might've fixed a bug regarding the
read index though I haven't been able to explicitly come up with a
counter-example. The problem was that the acks collected for the read
index weren't taking into account membership changes, so they'd run the
danger of using acks from nodes since removed to claim that a quorum of
acks had been received. There's a chance that there isn't a
counter-example (the only guarantee extracted from the "quorum" is that
there isn't another leader, but even if there's another leader all that
matters is that that leader doesn't have a divergent history from the
stale leader in the hypothetical counter-example), but either way there
is morally a bug here that is now fixed because VoteCommitted doesn't
care about votes from members that are not voters known to the currently
active configuration.
Instead of having disjoint mappings of ID to *Progress for voters and
learners, use a map[id]struct{} for each and share a map of *Progress
among them.
This is easier to handle when joint quorums are introduced, at which
point a node may be a voting member of two quorums.
The quorum package contains logic to reason about committed indexes as
well as vote outcomes for both majority and joint quorums. The package
is oblivious to the existence of learner replicas.
The plan is to hook this up to etcd/raft in subsequent commits.
We were already taking some precautions against learners campaigning,
but there was no safeguard against an explicit call to `Campaign()`.
The newly added test also verifies that leadership transfers to
learners are ignored.
This will keep them from diverging to much. In fact we should remove
some of the obvious differences that have crept in over time so that
what remains is structural. This isn't done in this commit since
it amounts to a change in the public API; we should lump this in
when we break the public API the next time.
This doesn't completely eliminate access to prs.nodes, but that's not
really necessary. This commit uses the existing APIs in a few more
places where it's convenient, and also sprinkles some assertions.
The Progress maps contain both the active configuration and information
about the replication status. By pulling it into its own component, this
becomes easier to unit test and also clarifies the code, which will see
changes as etcd-io/etcd#7625 is addressed.
More functionality will move into `prs` in self-contained follow-up commits.
Appending to an empty slice twice could (and often did) result in
multiple allocations. This was wasteful. We can avoid this by performing
a single allocation with the correct size and copying into it.
`raftpb.Entry.String` takes a pointer receiver, so calling it
on a loop variable was causing the variable to escape. Removing
the `.String()` call was enough to avoid the allocation, but
this also avoids a memory copy and prevents similar bugs.
This was responsible for 11.63% of total allocations in an
experiment with https://github.com/nvanbenschoten/raft-toy.
By boxing a heap-allocated slice header instead of the slice
header on the stack, we can avoid an allocation when passing
through the sort.Interface interface.
This was responsible for 26.61% of total allocations in an
experiment with https://github.com/nvanbenschoten/raft-toy.
Leader should check message sender after receiving MsgReadIndex, even
when raft quorum is 1. The message could be sent from learner node, and
leader should respond.
When a follower requires a snapshot and the snapshot is sent at the
committed (and last) index in an otherwise idle Raft group, the follower
would previously remain in ProgressStateProbe even though it had been
caught up completely.
In a busy Raft group this wouldn't be an issue since the next round of
MsgApp would update the state, but in an idle group there's nothing
that rectifies the status (since there's nothing to append or update).
The reason this matters is that the state is exposed through
`RaftStatus()`. Concretely, in CockroachDB, we use the Raft status to
make sharding decisions (since it's dangerous to make rapid changes
to a fragile Raft group), and had to work around this problem[1].
[1]: 91b11dae41/pkg/storage/split_delay_helper.go (L138-L141)
The leader perpetually kept itself in ProgressStateProbe even though of
course it has perfect knowledge of its log. This wasn't usually an issue
because it also doesn't care about its own Progress, but it's better to
keep this data correctly maintained, especially since this is part of
raft.Status and thus becomes visible to applications using the Raft
library.
(Concretely, in CockroachDB we use the Progress to inform log
truncations).
Prior to this change, MaxSizePerMsg was used both to cap the total byte size of
entries in messages as well as the total byte size of entries passed through
CommittedEntries in the Ready struct. This change adds a new Config parameter
MaxCommittedSizePerReady which defaults to MaxSizePerMsg and contols the second
of above descibed settings.