package raft import ( "bytes" "math/rand" "reflect" "sort" "testing" pb "github.com/coreos/etcd/raft/raftpb" ) // nextEnts returns the appliable entries and updates the applied index func (r *raft) nextEnts() (ents []pb.Entry) { ents = r.raftLog.nextEnts() r.raftLog.resetNextEnts() return ents } type Interface interface { Step(m pb.Message) error ReadMessages() []pb.Message } func TestLeaderElection(t *testing.T) { tests := []struct { *network state stateType }{ {newNetwork(nil, nil, nil), stateLeader}, {newNetwork(nil, nil, nopStepper), stateLeader}, {newNetwork(nil, nopStepper, nopStepper), stateCandidate}, {newNetwork(nil, nopStepper, nopStepper, nil), stateCandidate}, {newNetwork(nil, nopStepper, nopStepper, nil, nil), stateLeader}, // three logs further along than 0 {newNetwork(nil, ents(1), ents(2), ents(1, 3), nil), stateFollower}, // logs converge {newNetwork(ents(1), nil, ents(2), ents(1), nil), stateLeader}, } for i, tt := range tests { tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) sm := tt.network.peers[0].(*raft) if sm.state != tt.state { t.Errorf("#%d: state = %s, want %s", i, sm.state, tt.state) } if g := sm.Term; g != 1 { t.Errorf("#%d: term = %d, want %d", i, g, 1) } } } func TestLogReplication(t *testing.T) { tests := []struct { *network msgs []pb.Message wcommitted int64 }{ { newNetwork(nil, nil, nil), []pb.Message{ {From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}}, }, 2, }, { newNetwork(nil, nil, nil), []pb.Message{ {From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}}, {From: 0, To: 1, Type: msgHup}, {From: 0, To: 1, Type: msgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}}, }, 4, }, } for i, tt := range tests { tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) for _, m := range tt.msgs { tt.send(m) } for j, x := range tt.network.peers { sm := x.(*raft) if sm.raftLog.committed != tt.wcommitted { t.Errorf("#%d.%d: committed = %d, want %d", i, j, sm.raftLog.committed, tt.wcommitted) } ents := make([]pb.Entry, 0) for _, e := range sm.nextEnts() { if e.Data != nil { ents = append(ents, e) } } props := make([]pb.Message, 0) for _, m := range tt.msgs { if m.Type == msgProp { props = append(props, m) } } for k, m := range props { if !bytes.Equal(ents[k].Data, m.Entries[0].Data) { t.Errorf("#%d.%d: data = %d, want %d", i, j, ents[k].Data, m.Entries[0].Data) } } } } } func TestSingleNodeCommit(t *testing.T) { tt := newNetwork(nil) tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) tt.send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: []byte("some data")}}}) tt.send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: []byte("some data")}}}) sm := tt.peers[0].(*raft) if sm.raftLog.committed != 3 { t.Errorf("committed = %d, want %d", sm.raftLog.committed, 3) } } // TestCannotCommitWithoutNewTermEntry tests the entries cannot be committed // when leader changes, no new proposal comes in and ChangeTerm proposal is // filtered. func TestCannotCommitWithoutNewTermEntry(t *testing.T) { tt := newNetwork(nil, nil, nil, nil, nil) tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) // 0 cannot reach 2,3,4 tt.cut(0, 2) tt.cut(0, 3) tt.cut(0, 4) tt.send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: []byte("some data")}}}) tt.send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: []byte("some data")}}}) sm := tt.peers[0].(*raft) if sm.raftLog.committed != 1 { t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1) } // network recovery tt.recover() // avoid committing ChangeTerm proposal tt.ignore(msgApp) // elect 1 as the new leader with term 2 tt.send(pb.Message{From: 1, To: 1, Type: msgHup}) // no log entries from previous term should be committed sm = tt.peers[1].(*raft) if sm.raftLog.committed != 1 { t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1) } tt.recover() // send out a heartbeat // after append a ChangeTerm entry from the current term, all entries // should be committed tt.send(pb.Message{From: 1, To: 1, Type: msgBeat}) if sm.raftLog.committed != 4 { t.Errorf("committed = %d, want %d", sm.raftLog.committed, 4) } // still be able to append a entry tt.send(pb.Message{From: 1, To: 1, Type: msgProp, Entries: []pb.Entry{{Data: []byte("some data")}}}) if sm.raftLog.committed != 5 { t.Errorf("committed = %d, want %d", sm.raftLog.committed, 5) } } // TestCommitWithoutNewTermEntry tests the entries could be committed // when leader changes, no new proposal comes in. func TestCommitWithoutNewTermEntry(t *testing.T) { tt := newNetwork(nil, nil, nil, nil, nil) tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) // 0 cannot reach 2,3,4 tt.cut(0, 2) tt.cut(0, 3) tt.cut(0, 4) tt.send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: []byte("some data")}}}) tt.send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: []byte("some data")}}}) sm := tt.peers[0].(*raft) if sm.raftLog.committed != 1 { t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1) } // network recovery tt.recover() // elect 1 as the new leader with term 2 // after append a ChangeTerm entry from the current term, all entries // should be committed tt.send(pb.Message{From: 1, To: 1, Type: msgHup}) if sm.raftLog.committed != 4 { t.Errorf("committed = %d, want %d", sm.raftLog.committed, 4) } } func TestDuelingCandidates(t *testing.T) { a := newRaft(0, nil, 0, 0) // k, id are set later b := newRaft(0, nil, 0, 0) c := newRaft(0, nil, 0, 0) nt := newNetwork(a, b, c) nt.cut(0, 2) nt.send(pb.Message{From: 0, To: 0, Type: msgHup}) nt.send(pb.Message{From: 2, To: 2, Type: msgHup}) nt.recover() nt.send(pb.Message{From: 2, To: 2, Type: msgHup}) wlog := &raftLog{ents: []pb.Entry{{}, pb.Entry{Data: nil, Term: 1, Index: 1}}, committed: 1} tests := []struct { sm *raft state stateType term int64 raftLog *raftLog }{ {a, stateFollower, 2, wlog}, {b, stateFollower, 2, wlog}, {c, stateFollower, 2, newLog()}, } for i, tt := range tests { if g := tt.sm.state; g != tt.state { t.Errorf("#%d: state = %s, want %s", i, g, tt.state) } if g := tt.sm.Term; g != tt.term { t.Errorf("#%d: term = %d, want %d", i, g, tt.term) } base := ltoa(tt.raftLog) if sm, ok := nt.peers[int64(i)].(*raft); ok { l := ltoa(sm.raftLog) if g := diffu(base, l); g != "" { t.Errorf("#%d: diff:\n%s", i, g) } } else { t.Logf("#%d: empty log", i) } } } func TestCandidateConcede(t *testing.T) { tt := newNetwork(nil, nil, nil) tt.isolate(0) tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) tt.send(pb.Message{From: 2, To: 2, Type: msgHup}) // heal the partition tt.recover() data := []byte("force follower") // send a proposal to 2 to flush out a msgApp to 0 tt.send(pb.Message{From: 2, To: 2, Type: msgProp, Entries: []pb.Entry{{Data: data}}}) a := tt.peers[0].(*raft) if g := a.state; g != stateFollower { t.Errorf("state = %s, want %s", g, stateFollower) } if g := a.Term; g != 1 { t.Errorf("term = %d, want %d", g, 1) } wantLog := ltoa(&raftLog{ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Index: 2, Data: data}}, committed: 2}) for i, p := range tt.peers { if sm, ok := p.(*raft); ok { l := ltoa(sm.raftLog) if g := diffu(wantLog, l); g != "" { t.Errorf("#%d: diff:\n%s", i, g) } } else { t.Logf("#%d: empty log", i) } } } func TestSingleNodeCandidate(t *testing.T) { tt := newNetwork(nil) tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) sm := tt.peers[0].(*raft) if sm.state != stateLeader { t.Errorf("state = %d, want %d", sm.state, stateLeader) } } func TestOldMessages(t *testing.T) { tt := newNetwork(nil, nil, nil) // make 0 leader @ term 3 tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) tt.send(pb.Message{From: 1, To: 1, Type: msgHup}) tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) // pretend we're an old leader trying to make progress tt.send(pb.Message{From: 0, To: 0, Type: msgApp, Term: 1, Entries: []pb.Entry{{Term: 1}}}) l := &raftLog{ ents: []pb.Entry{ {}, {Data: nil, Term: 1, Index: 1}, {Data: nil, Term: 2, Index: 2}, {Data: nil, Term: 3, Index: 3}, }, committed: 3, } base := ltoa(l) for i, p := range tt.peers { if sm, ok := p.(*raft); ok { l := ltoa(sm.raftLog) if g := diffu(base, l); g != "" { t.Errorf("#%d: diff:\n%s", i, g) } } else { t.Logf("#%d: empty log", i) } } } // TestOldMessagesReply - optimization - reply with new term. func TestProposal(t *testing.T) { tests := []struct { *network success bool }{ {newNetwork(nil, nil, nil), true}, {newNetwork(nil, nil, nopStepper), true}, {newNetwork(nil, nopStepper, nopStepper), false}, {newNetwork(nil, nopStepper, nopStepper, nil), false}, {newNetwork(nil, nopStepper, nopStepper, nil, nil), true}, } for i, tt := range tests { send := func(m pb.Message) { defer func() { // only recover is we expect it to panic so // panics we don't expect go up. if !tt.success { e := recover() if e != nil { t.Logf("#%d: err: %s", i, e) } } }() tt.send(m) } data := []byte("somedata") // promote 0 the leader send(pb.Message{From: 0, To: 0, Type: msgHup}) send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{Data: data}}}) wantLog := newLog() if tt.success { wantLog = &raftLog{ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Index: 2, Data: data}}, committed: 2} } base := ltoa(wantLog) for i, p := range tt.peers { if sm, ok := p.(*raft); ok { l := ltoa(sm.raftLog) if g := diffu(base, l); g != "" { t.Errorf("#%d: diff:\n%s", i, g) } } else { t.Logf("#%d: empty log", i) } } sm := tt.network.peers[0].(*raft) if g := sm.Term; g != 1 { t.Errorf("#%d: term = %d, want %d", i, g, 1) } } } func TestProposalByProxy(t *testing.T) { data := []byte("somedata") tests := []*network{ newNetwork(nil, nil, nil), newNetwork(nil, nil, nopStepper), } for i, tt := range tests { // promote 0 the leader tt.send(pb.Message{From: 0, To: 0, Type: msgHup}) // propose via follower tt.send(pb.Message{From: 1, To: 1, Type: msgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}}) wantLog := &raftLog{ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Data: data, Index: 2}}, committed: 2} base := ltoa(wantLog) for i, p := range tt.peers { if sm, ok := p.(*raft); ok { l := ltoa(sm.raftLog) if g := diffu(base, l); g != "" { t.Errorf("#%d: diff:\n%s", i, g) } } else { t.Logf("#%d: empty log", i) } } sm := tt.peers[0].(*raft) if g := sm.Term; g != 1 { t.Errorf("#%d: term = %d, want %d", i, g, 1) } } } func TestCommit(t *testing.T) { tests := []struct { matches []int64 logs []pb.Entry smTerm int64 w int64 }{ // single {[]int64{1}, []pb.Entry{{}, {Term: 1}}, 1, 1}, {[]int64{1}, []pb.Entry{{}, {Term: 1}}, 2, 0}, {[]int64{2}, []pb.Entry{{}, {Term: 1}, {Term: 2}}, 2, 2}, {[]int64{1}, []pb.Entry{{}, {Term: 2}}, 2, 1}, // odd {[]int64{2, 1, 1}, []pb.Entry{{}, {Term: 1}, {Term: 2}}, 1, 1}, {[]int64{2, 1, 1}, []pb.Entry{{}, {Term: 1}, {Term: 1}}, 2, 0}, {[]int64{2, 1, 2}, []pb.Entry{{}, {Term: 1}, {Term: 2}}, 2, 2}, {[]int64{2, 1, 2}, []pb.Entry{{}, {Term: 1}, {Term: 1}}, 2, 0}, // even {[]int64{2, 1, 1, 1}, []pb.Entry{{}, {Term: 1}, {Term: 2}}, 1, 1}, {[]int64{2, 1, 1, 1}, []pb.Entry{{}, {Term: 1}, {Term: 1}}, 2, 0}, {[]int64{2, 1, 1, 2}, []pb.Entry{{}, {Term: 1}, {Term: 2}}, 1, 1}, {[]int64{2, 1, 1, 2}, []pb.Entry{{}, {Term: 1}, {Term: 1}}, 2, 0}, {[]int64{2, 1, 2, 2}, []pb.Entry{{}, {Term: 1}, {Term: 2}}, 2, 2}, {[]int64{2, 1, 2, 2}, []pb.Entry{{}, {Term: 1}, {Term: 1}}, 2, 0}, } for i, tt := range tests { prs := make(map[int64]*progress) for j := 0; j < len(tt.matches); j++ { prs[int64(j)] = &progress{tt.matches[j], tt.matches[j] + 1} } sm := &raft{raftLog: &raftLog{ents: tt.logs}, prs: prs, State: pb.State{Term: tt.smTerm}} sm.maybeCommit() if g := sm.raftLog.committed; g != tt.w { t.Errorf("#%d: committed = %d, want %d", i, g, tt.w) } } } // ensure that the Step function ignores the message from old term and does not pass it to the // acutal stepX function. func TestStepIgnoreOldTermMsg(t *testing.T) { called := false fakeStep := func(r *raft, m pb.Message) { called = true } sm := newRaft(0, []int64{0}, 0, 0) sm.step = fakeStep sm.Term = 2 sm.Step(pb.Message{Type: msgApp, Term: sm.Term - 1}) if called == true { t.Errorf("stepFunc called = %v , want %v", called, false) } } // TestHandleMsgApp ensures: // 1. Reply false if log doesn’t contain an entry at prevLogIndex whose term matches prevLogTerm. // 2. If an existing entry conflicts with a new one (same index but different terms), // delete the existing entry and all that follow it; append any new entries not already in the log. // 3. If leaderCommit > commitIndex, set commitIndex = min(leaderCommit, index of last new entry). func TestHandleMsgApp(t *testing.T) { tests := []struct { m pb.Message wIndex int64 wCommit int64 wAccept bool }{ // Ensure 1 {pb.Message{Type: msgApp, Term: 2, LogTerm: 3, Index: 2, Commit: 3}, 2, 0, false}, // previous log mismatch {pb.Message{Type: msgApp, Term: 2, LogTerm: 3, Index: 3, Commit: 3}, 2, 0, false}, // previous log non-exist // Ensure 2 {pb.Message{Type: msgApp, Term: 2, LogTerm: 1, Index: 1, Commit: 1}, 2, 1, true}, {pb.Message{Type: msgApp, Term: 2, LogTerm: 0, Index: 0, Commit: 1, Entries: []pb.Entry{{Term: 2}}}, 1, 1, true}, {pb.Message{Type: msgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 3, Entries: []pb.Entry{{Term: 2}, {Term: 2}}}, 4, 3, true}, {pb.Message{Type: msgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 4, Entries: []pb.Entry{{Term: 2}}}, 3, 3, true}, {pb.Message{Type: msgApp, Term: 2, LogTerm: 1, Index: 1, Commit: 4, Entries: []pb.Entry{{Term: 2}}}, 2, 2, true}, // Ensure 3 {pb.Message{Type: msgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 2}, 2, 2, true}, {pb.Message{Type: msgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 4}, 2, 2, true}, // commit upto min(commit, last) } for i, tt := range tests { sm := &raft{ state: stateFollower, State: pb.State{Term: 2}, raftLog: &raftLog{committed: 0, ents: []pb.Entry{{}, {Term: 1}, {Term: 2}}}, } sm.handleAppendEntries(tt.m) if sm.raftLog.lastIndex() != tt.wIndex { t.Errorf("#%d: lastIndex = %d, want %d", i, sm.raftLog.lastIndex(), tt.wIndex) } if sm.raftLog.committed != tt.wCommit { t.Errorf("#%d: committed = %d, want %d", i, sm.raftLog.committed, tt.wCommit) } m := sm.ReadMessages() if len(m) != 1 { t.Errorf("#%d: msg = nil, want 1") } gaccept := true if m[0].Index == -1 { gaccept = false } if gaccept != tt.wAccept { t.Errorf("#%d: accept = %v, want %v", gaccept, tt.wAccept) } } } func TestRecvMsgVote(t *testing.T) { tests := []struct { state stateType i, term int64 voteFor int64 w int64 }{ {stateFollower, 0, 0, none, -1}, {stateFollower, 0, 1, none, -1}, {stateFollower, 0, 2, none, -1}, {stateFollower, 0, 3, none, 2}, {stateFollower, 1, 0, none, -1}, {stateFollower, 1, 1, none, -1}, {stateFollower, 1, 2, none, -1}, {stateFollower, 1, 3, none, 2}, {stateFollower, 2, 0, none, -1}, {stateFollower, 2, 1, none, -1}, {stateFollower, 2, 2, none, 2}, {stateFollower, 2, 3, none, 2}, {stateFollower, 3, 0, none, -1}, {stateFollower, 3, 1, none, -1}, {stateFollower, 3, 2, none, 2}, {stateFollower, 3, 3, none, 2}, {stateFollower, 3, 2, 1, 2}, {stateFollower, 3, 2, 0, -1}, {stateLeader, 3, 3, 0, -1}, {stateCandidate, 3, 3, 0, -1}, } for i, tt := range tests { sm := newRaft(0, []int64{0}, 0, 0) sm.state = tt.state switch tt.state { case stateFollower: sm.step = stepFollower case stateCandidate: sm.step = stepCandidate case stateLeader: sm.step = stepLeader } sm.State = pb.State{Vote: tt.voteFor} sm.raftLog = &raftLog{ents: []pb.Entry{{}, {Term: 2}, {Term: 2}}} sm.Step(pb.Message{Type: msgVote, From: 1, Index: tt.i, LogTerm: tt.term}) msgs := sm.ReadMessages() if g := len(msgs); g != 1 { t.Errorf("#%d: len(msgs) = %d, want 1", i, g) continue } if g := msgs[0].Index; g != tt.w { t.Errorf("#%d, m.Index = %d, want %d", i, g, tt.w) } } } func TestStateTransition(t *testing.T) { tests := []struct { from stateType to stateType wallow bool wterm int64 wlead int64 }{ {stateFollower, stateFollower, true, 1, none}, {stateFollower, stateCandidate, true, 1, none}, {stateFollower, stateLeader, false, -1, none}, {stateCandidate, stateFollower, true, 0, none}, {stateCandidate, stateCandidate, true, 1, none}, {stateCandidate, stateLeader, true, 0, 0}, {stateLeader, stateFollower, true, 1, none}, {stateLeader, stateCandidate, false, 1, none}, {stateLeader, stateLeader, true, 0, 0}, } for i, tt := range tests { func() { defer func() { if r := recover(); r != nil { if tt.wallow == true { t.Errorf("%d: allow = %v, want %v", i, false, true) } } }() sm := newRaft(0, []int64{0}, 0, 0) sm.state = tt.from switch tt.to { case stateFollower: sm.becomeFollower(tt.wterm, tt.wlead) case stateCandidate: sm.becomeCandidate() case stateLeader: sm.becomeLeader() } if sm.Term != tt.wterm { t.Errorf("%d: term = %d, want %d", i, sm.Term, tt.wterm) } if sm.lead != tt.wlead { t.Errorf("%d: lead = %d, want %d", i, sm.lead, tt.wlead) } }() } } func TestAllServerStepdown(t *testing.T) { tests := []struct { state stateType wstate stateType wterm int64 windex int64 }{ {stateFollower, stateFollower, 3, 1}, {stateCandidate, stateFollower, 3, 1}, {stateLeader, stateFollower, 3, 2}, } tmsgTypes := [...]int64{msgVote, msgApp} tterm := int64(3) for i, tt := range tests { sm := newRaft(0, []int64{0, 1, 2}, 0, 0) switch tt.state { case stateFollower: sm.becomeFollower(1, 0) case stateCandidate: sm.becomeCandidate() case stateLeader: sm.becomeCandidate() sm.becomeLeader() } for j, msgType := range tmsgTypes { sm.Step(pb.Message{From: 1, Type: msgType, Term: tterm, LogTerm: tterm}) if sm.state != tt.wstate { t.Errorf("#%d.%d state = %v , want %v", i, j, sm.state, tt.wstate) } if sm.Term != tt.wterm { t.Errorf("#%d.%d term = %v , want %v", i, j, sm.Term, tt.wterm) } if int64(len(sm.raftLog.ents)) != tt.windex { t.Errorf("#%d.%d index = %v , want %v", i, j, len(sm.raftLog.ents), tt.windex) } wlead := int64(1) if msgType == msgVote { wlead = none } if sm.lead != wlead { t.Errorf("#%d, sm.lead = %d, want %d", i, sm.lead, none) } } } } func TestLeaderAppResp(t *testing.T) { tests := []struct { index int64 wmsgNum int windex int64 wcommitted int64 }{ {-1, 1, 1, 0}, // bad resp; leader does not commit; reply with log entries {2, 2, 2, 2}, // good resp; leader commits; broadcast with commit index } for i, tt := range tests { // sm term is 1 after it becomes the leader. // thus the last log term must be 1 to be committed. sm := newRaft(0, []int64{0, 1, 2}, 0, 0) sm.raftLog = &raftLog{ents: []pb.Entry{{}, {Term: 0}, {Term: 1}}} sm.becomeCandidate() sm.becomeLeader() sm.ReadMessages() sm.Step(pb.Message{From: 1, Type: msgAppResp, Index: tt.index, Term: sm.Term}) msgs := sm.ReadMessages() if len(msgs) != tt.wmsgNum { t.Errorf("#%d msgNum = %d, want %d", i, len(msgs), tt.wmsgNum) } for j, msg := range msgs { if msg.Index != tt.windex { t.Errorf("#%d.%d index = %d, want %d", i, j, msg.Index, tt.windex) } if msg.Commit != tt.wcommitted { t.Errorf("#%d.%d commit = %d, want %d", i, j, msg.Commit, tt.wcommitted) } } } } // tests the output of the statemachine when receiving msgBeat func TestRecvMsgBeat(t *testing.T) { tests := []struct { state stateType wMsg int }{ {stateLeader, 2}, // candidate and follower should ignore msgBeat {stateCandidate, 0}, {stateFollower, 0}, } for i, tt := range tests { sm := newRaft(0, []int64{0, 1, 2}, 0, 0) sm.raftLog = &raftLog{ents: []pb.Entry{{}, {Term: 0}, {Term: 1}}} sm.Term = 1 sm.state = tt.state switch tt.state { case stateFollower: sm.step = stepFollower case stateCandidate: sm.step = stepCandidate case stateLeader: sm.step = stepLeader } sm.Step(pb.Message{From: 0, To: 0, Type: msgBeat}) msgs := sm.ReadMessages() if len(msgs) != tt.wMsg { t.Errorf("%d: len(msgs) = %d, want %d", i, len(msgs), tt.wMsg) } for _, m := range msgs { if m.Type != msgApp { t.Errorf("%d: msg.type = %v, want %v", m.Type, msgApp) } } } } func TestRestore(t *testing.T) { s := pb.Snapshot{ Index: defaultCompactThreshold + 1, Term: defaultCompactThreshold + 1, Nodes: []int64{0, 1, 2}, } sm := newRaft(0, []int64{0, 1}, 0, 0) if ok := sm.restore(s); !ok { t.Fatal("restore fail, want succeed") } if sm.raftLog.lastIndex() != s.Index { t.Errorf("log.lastIndex = %d, want %d", sm.raftLog.lastIndex(), s.Index) } if sm.raftLog.term(s.Index) != s.Term { t.Errorf("log.lastTerm = %d, want %d", sm.raftLog.term(s.Index), s.Term) } sg := int64Slice(sm.nodes()) sw := int64Slice(s.Nodes) sort.Sort(sg) sort.Sort(sw) if !reflect.DeepEqual(sg, sw) { t.Errorf("sm.Nodes = %+v, want %+v", sg, sw) } if !reflect.DeepEqual(sm.raftLog.snapshot, s) { t.Errorf("snapshot = %+v, want %+v", sm.raftLog.snapshot, s) } if ok := sm.restore(s); ok { t.Fatal("restore succeed, want fail") } } func TestProvideSnap(t *testing.T) { s := pb.Snapshot{ Index: defaultCompactThreshold + 1, Term: defaultCompactThreshold + 1, Nodes: []int64{0, 1}, } sm := newRaft(0, []int64{0}, 0, 0) // restore the statemachin from a snapshot // so it has a compacted log and a snapshot sm.restore(s) sm.becomeCandidate() sm.becomeLeader() sm.Step(pb.Message{From: 0, To: 0, Type: msgBeat}) msgs := sm.ReadMessages() if len(msgs) != 1 { t.Errorf("len(msgs) = %d, want 1", len(msgs)) } m := msgs[0] if m.Type != msgApp { t.Errorf("m.Type = %v, want %v", m.Type, msgApp) } // force set the next of node 1, so that // node 1 needs a snapshot sm.prs[1].next = sm.raftLog.offset sm.Step(pb.Message{From: 1, To: 0, Type: msgAppResp, Index: -1}) msgs = sm.ReadMessages() if len(msgs) != 1 { t.Errorf("len(msgs) = %d, want 1", len(msgs)) } m = msgs[0] if m.Type != msgSnap { t.Errorf("m.Type = %v, want %v", m.Type, msgSnap) } } func TestRestoreFromSnapMsg(t *testing.T) { s := pb.Snapshot{ Index: defaultCompactThreshold + 1, Term: defaultCompactThreshold + 1, Nodes: []int64{0, 1}, } m := pb.Message{Type: msgSnap, From: 0, Term: 1, Snapshot: s} sm := newRaft(1, []int64{0, 1}, 0, 0) sm.Step(m) if !reflect.DeepEqual(sm.raftLog.snapshot, s) { t.Errorf("snapshot = %+v, want %+v", sm.raftLog.snapshot, s) } } func TestSlowNodeRestore(t *testing.T) { nt := newNetwork(nil, nil, nil) nt.send(pb.Message{From: 0, To: 0, Type: msgHup}) nt.isolate(2) for j := 0; j < defaultCompactThreshold+1; j++ { nt.send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{}}}) } lead := nt.peers[0].(*raft) lead.nextEnts() lead.compact(nil) nt.recover() nt.send(pb.Message{From: 0, To: 0, Type: msgBeat}) follower := nt.peers[2].(*raft) if !reflect.DeepEqual(follower.raftLog.snapshot, lead.raftLog.snapshot) { t.Errorf("follower.snap = %+v, want %+v", follower.raftLog.snapshot, lead.raftLog.snapshot) } committed := follower.raftLog.lastIndex() nt.send(pb.Message{From: 0, To: 0, Type: msgProp, Entries: []pb.Entry{{}}}) if follower.raftLog.committed != committed+1 { t.Errorf("follower.comitted = %d, want %d", follower.raftLog.committed, committed+1) } } func ents(terms ...int64) *raft { ents := []pb.Entry{{}} for _, term := range terms { ents = append(ents, pb.Entry{Term: term}) } sm := &raft{raftLog: &raftLog{ents: ents}} sm.reset(0) return sm } type network struct { peers map[int64]Interface dropm map[connem]float64 ignorem map[int64]bool } // newNetwork initializes a network from peers. // A nil node will be replaced with a new *stateMachine. // A *stateMachine will get its k, id. // When using stateMachine, the address list is always [0, n). func newNetwork(peers ...Interface) *network { size := len(peers) defaultPeerAddrs := make([]int64, size) for i := 0; i < size; i++ { defaultPeerAddrs[i] = int64(i) } npeers := make(map[int64]Interface, size) for id, p := range peers { nid := int64(id) switch v := p.(type) { case nil: sm := newRaft(nid, defaultPeerAddrs, 0, 0) npeers[nid] = sm case *raft: v.id = nid v.prs = make(map[int64]*progress) for i := 0; i < size; i++ { v.prs[int64(i)] = &progress{} } v.reset(0) npeers[nid] = v default: npeers[nid] = v } } return &network{ peers: npeers, dropm: make(map[connem]float64), ignorem: make(map[int64]bool), } } func (nw *network) send(msgs ...pb.Message) { for len(msgs) > 0 { m := msgs[0] p := nw.peers[m.To] p.Step(m) msgs = append(msgs[1:], nw.filter(p.ReadMessages())...) } } func (nw *network) drop(from, to int64, perc float64) { nw.dropm[connem{from, to}] = perc } func (nw *network) cut(one, other int64) { nw.drop(one, other, 1) nw.drop(other, one, 1) } func (nw *network) isolate(id int64) { for i := 0; i < len(nw.peers); i++ { nid := int64(i) if nid != id { nw.drop(id, nid, 1.0) nw.drop(nid, id, 1.0) } } } func (nw *network) ignore(t int64) { nw.ignorem[t] = true } func (nw *network) recover() { nw.dropm = make(map[connem]float64) nw.ignorem = make(map[int64]bool) } func (nw *network) filter(msgs []pb.Message) []pb.Message { mm := make([]pb.Message, 0) for _, m := range msgs { if nw.ignorem[m.Type] { continue } switch m.Type { case msgHup: // hups never go over the network, so don't drop them but panic panic("unexpected msgHup") default: perc := nw.dropm[connem{m.From, m.To}] if n := rand.Float64(); n < perc { continue } } mm = append(mm, m) } return mm } type connem struct { from, to int64 } type blackHole struct{} func (blackHole) Step(pb.Message) error { return nil } func (blackHole) ReadMessages() []pb.Message { return nil } var nopStepper = &blackHole{}