// Copyright 2015 The etcd Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package etcdserver import ( "expvar" "fmt" "log" "sync" "time" "go.etcd.io/etcd/client/pkg/v3/logutil" "go.etcd.io/etcd/pkg/v3/contention" "go.etcd.io/etcd/raft/v3" "go.etcd.io/etcd/raft/v3/raftpb" "go.etcd.io/etcd/server/v3/etcdserver/api/rafthttp" serverstorage "go.etcd.io/etcd/server/v3/storage" "go.uber.org/zap" ) const ( // The max throughput of etcd will not exceed 100MB/s (100K * 1KB value). // Assuming the RTT is around 10ms, 1MB max size is large enough. maxSizePerMsg = 1 * 1024 * 1024 // Never overflow the rafthttp buffer, which is 4096. // TODO: a better const? maxInflightMsgs = 4096 / 8 ) var ( // protects raftStatus raftStatusMu sync.Mutex // indirection for expvar func interface // expvar panics when publishing duplicate name // expvar does not support remove a registered name // so only register a func that calls raftStatus // and change raftStatus as we need. raftStatus func() raft.Status ) func init() { expvar.Publish("raft.status", expvar.Func(func() interface{} { raftStatusMu.Lock() defer raftStatusMu.Unlock() if raftStatus == nil { return nil } return raftStatus() })) } // toApply contains entries, snapshot to be applied. Once // an toApply is consumed, the entries will be persisted to // to raft storage concurrently; the application must read // raftDone before assuming the raft messages are stable. type toApply struct { entries []raftpb.Entry snapshot raftpb.Snapshot // notifyc synchronizes etcd server applies with the raft node notifyc chan struct{} } type raftNode struct { lg *zap.Logger tickMu *sync.Mutex raftNodeConfig // a chan to send/receive snapshot msgSnapC chan raftpb.Message // a chan to send out apply applyc chan toApply // a chan to send out readState readStateC chan raft.ReadState // utility ticker *time.Ticker // contention detectors for raft heartbeat message td *contention.TimeoutDetector stopped chan struct{} done chan struct{} } type raftNodeConfig struct { lg *zap.Logger // to check if msg receiver is removed from cluster isIDRemoved func(id uint64) bool raft.Node raftStorage *raft.MemoryStorage storage serverstorage.Storage heartbeat time.Duration // for logging // transport specifies the transport to send and receive msgs to members. // Sending messages MUST NOT block. It is okay to drop messages, since // clients should timeout and reissue their messages. // If transport is nil, server will panic. transport rafthttp.Transporter } func newRaftNode(cfg raftNodeConfig) *raftNode { var lg raft.Logger if cfg.lg != nil { lg = NewRaftLoggerZap(cfg.lg) } else { lcfg := logutil.DefaultZapLoggerConfig var err error lg, err = NewRaftLogger(&lcfg) if err != nil { log.Fatalf("cannot create raft logger %v", err) } } raft.SetLogger(lg) r := &raftNode{ lg: cfg.lg, tickMu: new(sync.Mutex), raftNodeConfig: cfg, // set up contention detectors for raft heartbeat message. // expect to send a heartbeat within 2 heartbeat intervals. td: contention.NewTimeoutDetector(2 * cfg.heartbeat), readStateC: make(chan raft.ReadState, 1), msgSnapC: make(chan raftpb.Message, maxInFlightMsgSnap), applyc: make(chan toApply), stopped: make(chan struct{}), done: make(chan struct{}), } if r.heartbeat == 0 { r.ticker = &time.Ticker{} } else { r.ticker = time.NewTicker(r.heartbeat) } return r } // raft.Node does not have locks in Raft package func (r *raftNode) tick() { r.tickMu.Lock() r.Tick() r.tickMu.Unlock() } // start prepares and starts raftNode in a new goroutine. It is no longer safe // to modify the fields after it has been started. func (r *raftNode) start(rh *raftReadyHandler) { internalTimeout := time.Second go func() { defer r.onStop() islead := false for { select { case <-r.ticker.C: r.tick() case rd := <-r.Ready(): if rd.SoftState != nil { newLeader := rd.SoftState.Lead != raft.None && rh.getLead() != rd.SoftState.Lead if newLeader { leaderChanges.Inc() } if rd.SoftState.Lead == raft.None { hasLeader.Set(0) } else { hasLeader.Set(1) } rh.updateLead(rd.SoftState.Lead) islead = rd.RaftState == raft.StateLeader if islead { isLeader.Set(1) } else { isLeader.Set(0) } rh.updateLeadership(newLeader) r.td.Reset() } if len(rd.ReadStates) != 0 { select { case r.readStateC <- rd.ReadStates[len(rd.ReadStates)-1]: case <-time.After(internalTimeout): r.lg.Warn("timed out sending read state", zap.Duration("timeout", internalTimeout)) case <-r.stopped: return } } notifyc := make(chan struct{}, 1) ap := toApply{ entries: rd.CommittedEntries, snapshot: rd.Snapshot, notifyc: notifyc, } updateCommittedIndex(&ap, rh) select { case r.applyc <- ap: case <-r.stopped: return } // the leader can write to its disk in parallel with replicating to the followers and them // writing to their disks. // For more details, check raft thesis 10.2.1 if islead { // gofail: var raftBeforeLeaderSend struct{} r.transport.Send(r.processMessages(rd.Messages)) } // Must save the snapshot file and WAL snapshot entry before saving any other entries or hardstate to // ensure that recovery after a snapshot restore is possible. if !raft.IsEmptySnap(rd.Snapshot) { // gofail: var raftBeforeSaveSnap struct{} if err := r.storage.SaveSnap(rd.Snapshot); err != nil { r.lg.Fatal("failed to save Raft snapshot", zap.Error(err)) } // gofail: var raftAfterSaveSnap struct{} } // gofail: var raftBeforeSave struct{} if err := r.storage.Save(rd.HardState, rd.Entries); err != nil { r.lg.Fatal("failed to save Raft hard state and entries", zap.Error(err)) } if !raft.IsEmptyHardState(rd.HardState) { proposalsCommitted.Set(float64(rd.HardState.Commit)) } // gofail: var raftAfterSave struct{} if !raft.IsEmptySnap(rd.Snapshot) { // Force WAL to fsync its hard state before Release() releases // old data from the WAL. Otherwise could get an error like: // panic: tocommit(107) is out of range [lastIndex(84)]. Was the raft log corrupted, truncated, or lost? // See https://github.com/etcd-io/etcd/issues/10219 for more details. if err := r.storage.Sync(); err != nil { r.lg.Fatal("failed to sync Raft snapshot", zap.Error(err)) } // etcdserver now claim the snapshot has been persisted onto the disk notifyc <- struct{}{} // gofail: var raftBeforeApplySnap struct{} r.raftStorage.ApplySnapshot(rd.Snapshot) r.lg.Info("applied incoming Raft snapshot", zap.Uint64("snapshot-index", rd.Snapshot.Metadata.Index)) // gofail: var raftAfterApplySnap struct{} if err := r.storage.Release(rd.Snapshot); err != nil { r.lg.Fatal("failed to release Raft wal", zap.Error(err)) } // gofail: var raftAfterWALRelease struct{} } r.raftStorage.Append(rd.Entries) if !islead { // finish processing incoming messages before we signal raftdone chan msgs := r.processMessages(rd.Messages) // now unblocks 'applyAll' that waits on Raft log disk writes before triggering snapshots notifyc <- struct{}{} // Candidate or follower needs to wait for all pending configuration // changes to be applied before sending messages. // Otherwise we might incorrectly count votes (e.g. votes from removed members). // Also slow machine's follower raft-layer could proceed to become the leader // on its own single-node cluster, before toApply-layer applies the config change. // We simply wait for ALL pending entries to be applied for now. // We might improve this later on if it causes unnecessary long blocking issues. waitApply := false for _, ent := range rd.CommittedEntries { if ent.Type == raftpb.EntryConfChange { waitApply = true break } } if waitApply { // blocks until 'applyAll' calls 'applyWait.Trigger' // to be in sync with scheduled config-change job // (assume notifyc has cap of 1) select { case notifyc <- struct{}{}: case <-r.stopped: return } } // gofail: var raftBeforeFollowerSend struct{} r.transport.Send(msgs) } else { // leader already processed 'MsgSnap' and signaled notifyc <- struct{}{} } r.Advance() case <-r.stopped: return } } }() } func updateCommittedIndex(ap *toApply, rh *raftReadyHandler) { var ci uint64 if len(ap.entries) != 0 { ci = ap.entries[len(ap.entries)-1].Index } if ap.snapshot.Metadata.Index > ci { ci = ap.snapshot.Metadata.Index } if ci != 0 { rh.updateCommittedIndex(ci) } } func (r *raftNode) processMessages(ms []raftpb.Message) []raftpb.Message { sentAppResp := false for i := len(ms) - 1; i >= 0; i-- { if r.isIDRemoved(ms[i].To) { ms[i].To = 0 } if ms[i].Type == raftpb.MsgAppResp { if sentAppResp { ms[i].To = 0 } else { sentAppResp = true } } if ms[i].Type == raftpb.MsgSnap { // There are two separate data store: the store for v2, and the KV for v3. // The msgSnap only contains the most recent snapshot of store without KV. // So we need to redirect the msgSnap to etcd server main loop for merging in the // current store snapshot and KV snapshot. select { case r.msgSnapC <- ms[i]: default: // drop msgSnap if the inflight chan if full. } ms[i].To = 0 } if ms[i].Type == raftpb.MsgHeartbeat { ok, exceed := r.td.Observe(ms[i].To) if !ok { // TODO: limit request rate. r.lg.Warn( "leader failed to send out heartbeat on time; took too long, leader is overloaded likely from slow disk", zap.String("to", fmt.Sprintf("%x", ms[i].To)), zap.Duration("heartbeat-interval", r.heartbeat), zap.Duration("expected-duration", 2*r.heartbeat), zap.Duration("exceeded-duration", exceed), ) heartbeatSendFailures.Inc() } } } return ms } func (r *raftNode) apply() chan toApply { return r.applyc } func (r *raftNode) stop() { select { case r.stopped <- struct{}{}: // Not already stopped, so trigger it case <-r.done: // Has already been stopped - no need to do anything return } // Block until the stop has been acknowledged by start() <-r.done } func (r *raftNode) onStop() { r.Stop() r.ticker.Stop() r.transport.Stop() if err := r.storage.Close(); err != nil { r.lg.Panic("failed to close Raft storage", zap.Error(err)) } close(r.done) } // for testing func (r *raftNode) pauseSending() { p := r.transport.(rafthttp.Pausable) p.Pause() } func (r *raftNode) resumeSending() { p := r.transport.(rafthttp.Pausable) p.Resume() } // advanceTicks advances ticks of Raft node. // This can be used for fast-forwarding election // ticks in multi data-center deployments, thus // speeding up election process. func (r *raftNode) advanceTicks(ticks int) { for i := 0; i < ticks; i++ { r.tick() } }