package raft import "fmt" const ( Normal int64 = iota AddNode RemoveNode ) const ( defaultCompactThreshold = 10000 ) type Entry struct { Type int64 Term int64 Data []byte } func (e *Entry) isConfig() bool { return e.Type == AddNode || e.Type == RemoveNode } type log struct { ents []Entry committed int64 applied int64 offset int64 // want a compact after the number of entries exceeds the threshold // TODO(xiangli) size might be a better criteria compactThreshold int64 } func newLog() *log { return &log{ ents: make([]Entry, 1), committed: 0, applied: 0, compactThreshold: defaultCompactThreshold, } } func (l *log) maybeAppend(index, logTerm, committed int64, ents ...Entry) bool { if l.matchTerm(index, logTerm) { from := index + 1 ci := l.findConflict(from, ents) switch { case ci == -1: case ci <= l.committed: panic("conflict with committed entry") default: l.append(ci-1, ents[ci-from:]...) } if l.committed < committed { l.committed = min(committed, l.lastIndex()) } return true } return false } func (l *log) append(after int64, ents ...Entry) int64 { l.ents = append(l.slice(l.offset, after+1), ents...) return l.lastIndex() } func (l *log) findConflict(from int64, ents []Entry) int64 { for i, ne := range ents { if oe := l.at(from + int64(i)); oe == nil || oe.Term != ne.Term { return from + int64(i) } } return -1 } func (l *log) lastIndex() int64 { return int64(len(l.ents)) - 1 + l.offset } func (l *log) term(i int64) int64 { if e := l.at(i); e != nil { return e.Term } return -1 } func (l *log) entries(i int64) []Entry { // never send out the first entry // first entry is only used for matching // prevLogTerm if i == l.offset { panic("cannot return the first entry in log") } return l.slice(i, l.lastIndex()+1) } func (l *log) isUpToDate(i, term int64) bool { e := l.at(l.lastIndex()) return term > e.Term || (term == e.Term && i >= l.lastIndex()) } func (l *log) matchTerm(i, term int64) bool { if e := l.at(i); e != nil { return e.Term == term } return false } func (l *log) maybeCommit(maxIndex, term int64) bool { if maxIndex > l.committed && l.term(maxIndex) == term { l.committed = maxIndex return true } return false } // nextEnts returns all the available entries for execution. // all the returned entries will be marked as applied. func (l *log) nextEnts() (ents []Entry) { if l.committed > l.applied { ents = l.slice(l.applied+1, l.committed+1) l.applied = l.committed } return ents } // compact removes the log entries before i, exclusive. // i must be not smaller than the index of the first entry // and not greater than the index of the last entry. // the number of entries after compaction will be returned. func (l *log) compact(i int64) int64 { if l.isOutOfBounds(i) { panic(fmt.Sprintf("compact %d out of bounds [%d:%d]", i, l.offset, l.lastIndex())) } l.ents = l.slice(i, l.lastIndex()+1) l.offset = i return int64(len(l.ents)) } func (l *log) shouldCompact() bool { return (l.applied - l.offset) > l.compactThreshold } func (l *log) restore(index, term int64) { l.ents = []Entry{{Term: term}} l.committed = index l.applied = index l.offset = index } func (l *log) at(i int64) *Entry { if l.isOutOfBounds(i) { return nil } return &l.ents[i-l.offset] } // slice get a slice of log entries from lo through hi-1, inclusive. func (l *log) slice(lo int64, hi int64) []Entry { if lo >= hi { return nil } if l.isOutOfBounds(lo) || l.isOutOfBounds(hi-1) { return nil } return l.ents[lo-l.offset : hi-l.offset] } func (l *log) isOutOfBounds(i int64) bool { if i < l.offset || i > l.lastIndex() { return true } return false } func min(a, b int64) int64 { if a > b { return b } return a }