// Copyright 2015 CoreOS, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package storage import ( "errors" "io" "log" "math" "math/rand" "sync" "time" "github.com/coreos/etcd/storage/backend" "github.com/coreos/etcd/storage/storagepb" ) var ( batchLimit = 10000 batchInterval = 100 * time.Millisecond keyBucketName = []byte("key") metaBucketName = []byte("meta") scheduledCompactKeyName = []byte("scheduledCompactRev") finishedCompactKeyName = []byte("finishedCompactRev") ErrTxnIDMismatch = errors.New("storage: txn id mismatch") ErrCompacted = errors.New("storage: required revision has been compacted") ErrFutureRev = errors.New("storage: required revision is a future revision") ErrCanceled = errors.New("storage: watcher is canceled") ) type store struct { mu sync.RWMutex b backend.Backend kvindex index currentRev revision // the main revision of the last compaction compactMainRev int64 tx backend.BatchTx tmu sync.Mutex // protect the txnID field txnID int64 // tracks the current txnID to verify txn operations wg sync.WaitGroup stopc chan struct{} } func New(path string) KV { return newStore(path) } func newStore(path string) *store { s := &store{ b: backend.New(path, batchInterval, batchLimit), kvindex: newTreeIndex(), currentRev: revision{}, compactMainRev: -1, stopc: make(chan struct{}), } tx := s.b.BatchTx() tx.Lock() tx.UnsafeCreateBucket(keyBucketName) tx.UnsafeCreateBucket(metaBucketName) tx.Unlock() s.b.ForceCommit() return s } func (s *store) Rev() int64 { s.mu.RLock() defer s.mu.RUnlock() return s.currentRev.main } func (s *store) Put(key, value []byte) int64 { id := s.TxnBegin() s.put(key, value) s.txnEnd(id) putCounter.Inc() return int64(s.currentRev.main) } func (s *store) Range(key, end []byte, limit, rangeRev int64) (kvs []storagepb.KeyValue, rev int64, err error) { id := s.TxnBegin() kvs, rev, err = s.rangeKeys(key, end, limit, rangeRev) s.txnEnd(id) rangeCounter.Inc() return kvs, rev, err } func (s *store) DeleteRange(key, end []byte) (n, rev int64) { id := s.TxnBegin() n = s.deleteRange(key, end) s.txnEnd(id) deleteCounter.Inc() return n, int64(s.currentRev.main) } func (s *store) TxnBegin() int64 { s.mu.Lock() s.currentRev.sub = 0 s.tx = s.b.BatchTx() s.tx.Lock() s.tmu.Lock() defer s.tmu.Unlock() s.txnID = rand.Int63() return s.txnID } func (s *store) TxnEnd(txnID int64) error { err := s.txnEnd(txnID) if err != nil { return err } txnCounter.Inc() return nil } // txnEnd is used for unlocking an internal txn. It does // not increase the txnCounter. func (s *store) txnEnd(txnID int64) error { s.tmu.Lock() defer s.tmu.Unlock() if txnID != s.txnID { return ErrTxnIDMismatch } s.tx.Unlock() if s.currentRev.sub != 0 { s.currentRev.main += 1 } s.currentRev.sub = 0 s.mu.Unlock() return nil } func (s *store) TxnRange(txnID int64, key, end []byte, limit, rangeRev int64) (kvs []storagepb.KeyValue, rev int64, err error) { s.tmu.Lock() defer s.tmu.Unlock() if txnID != s.txnID { return nil, 0, ErrTxnIDMismatch } return s.rangeKeys(key, end, limit, rangeRev) } func (s *store) TxnPut(txnID int64, key, value []byte) (rev int64, err error) { s.tmu.Lock() defer s.tmu.Unlock() if txnID != s.txnID { return 0, ErrTxnIDMismatch } s.put(key, value) return int64(s.currentRev.main + 1), nil } func (s *store) TxnDeleteRange(txnID int64, key, end []byte) (n, rev int64, err error) { s.tmu.Lock() defer s.tmu.Unlock() if txnID != s.txnID { return 0, 0, ErrTxnIDMismatch } n = s.deleteRange(key, end) if n != 0 || s.currentRev.sub != 0 { rev = int64(s.currentRev.main + 1) } else { rev = int64(s.currentRev.main) } return n, rev, nil } // RangeEvents gets the events from key to end in [startRev, endRev). // If `end` is nil, the request only observes the events on key. // If `end` is not nil, it observes the events on key range [key, range_end). // Limit limits the number of events returned. // If startRev <=0, rangeEvents returns events from the beginning of uncompacted history. // If endRev <=0, it indicates there is no end revision. // // If the required start rev is compacted, ErrCompacted will be returned. // If the required start rev has not happened, ErrFutureRev will be returned. // // RangeEvents returns events that satisfy the requirement (0 <= n <= limit). // If events in the revision range have not all happened, it returns immeidately // what is available. // It also returns nextRev which indicates the start revision used for the following // RangeEvents call. The nextRev could be smaller than the given endRev if the store // has not progressed so far or it hits the event limit. // // TODO: return byte slices instead of events to avoid meaningless encode and decode. func (s *store) RangeEvents(key, end []byte, limit, startRev, endRev int64) (evs []storagepb.Event, nextRev int64, err error) { s.mu.Lock() defer s.mu.Unlock() if startRev > 0 && startRev <= s.compactMainRev { return nil, 0, ErrCompacted } if startRev > s.currentRev.main { return nil, 0, ErrFutureRev } revs := s.kvindex.RangeEvents(key, end, startRev) if len(revs) == 0 { return nil, s.currentRev.main + 1, nil } tx := s.b.BatchTx() tx.Lock() defer tx.Unlock() // fetch events from the backend using revisions for _, rev := range revs { if endRev > 0 && rev.main >= endRev { return evs, rev.main, nil } revbytes := newRevBytes() revToBytes(rev, revbytes) _, vs := tx.UnsafeRange(keyBucketName, revbytes, nil, 0) if len(vs) != 1 { log.Fatalf("storage: range cannot find rev (%d,%d)", rev.main, rev.sub) } e := storagepb.Event{} if err := e.Unmarshal(vs[0]); err != nil { log.Fatalf("storage: cannot unmarshal event: %v", err) } evs = append(evs, e) if limit > 0 && len(evs) >= int(limit) { return evs, rev.main + 1, nil } } return evs, s.currentRev.main + 1, nil } func (s *store) Compact(rev int64) error { s.mu.Lock() defer s.mu.Unlock() if rev <= s.compactMainRev { return ErrCompacted } if rev > s.currentRev.main { return ErrFutureRev } start := time.Now() s.compactMainRev = rev rbytes := newRevBytes() revToBytes(revision{main: rev}, rbytes) tx := s.b.BatchTx() tx.Lock() tx.UnsafePut(metaBucketName, scheduledCompactKeyName, rbytes) tx.Unlock() // ensure that desired compaction is persisted s.b.ForceCommit() keep := s.kvindex.Compact(rev) s.wg.Add(1) go s.scheduleCompaction(rev, keep) indexCompactionPauseDurations.Observe(float64(time.Now().Sub(start) / time.Millisecond)) return nil } func (s *store) Hash() (uint32, error) { s.b.ForceCommit() return s.b.Hash() } func (s *store) Snapshot(w io.Writer) (int64, error) { s.b.ForceCommit() return s.b.Snapshot(w) } func (s *store) Restore() error { s.mu.Lock() defer s.mu.Unlock() min, max := newRevBytes(), newRevBytes() revToBytes(revision{}, min) revToBytes(revision{main: math.MaxInt64, sub: math.MaxInt64}, max) // restore index tx := s.b.BatchTx() tx.Lock() _, finishedCompactBytes := tx.UnsafeRange(metaBucketName, finishedCompactKeyName, nil, 0) if len(finishedCompactBytes) != 0 { s.compactMainRev = bytesToRev(finishedCompactBytes[0]).main log.Printf("storage: restore compact to %d", s.compactMainRev) } // TODO: limit N to reduce max memory usage keys, vals := tx.UnsafeRange(keyBucketName, min, max, 0) for i, key := range keys { e := &storagepb.Event{} if err := e.Unmarshal(vals[i]); err != nil { log.Fatalf("storage: cannot unmarshal event: %v", err) } rev := bytesToRev(key) // restore index switch e.Type { case storagepb.PUT: s.kvindex.Restore(e.Kv.Key, revision{e.Kv.CreateRevision, 0}, rev, e.Kv.Version) case storagepb.DELETE: s.kvindex.Tombstone(e.Kv.Key, rev) default: log.Panicf("storage: unexpected event type %s", e.Type) } // update revision s.currentRev = rev } _, scheduledCompactBytes := tx.UnsafeRange(metaBucketName, scheduledCompactKeyName, nil, 0) if len(scheduledCompactBytes) != 0 { scheduledCompact := bytesToRev(scheduledCompactBytes[0]).main if scheduledCompact > s.compactMainRev { log.Printf("storage: resume scheduled compaction at %d", scheduledCompact) go s.Compact(scheduledCompact) } } tx.Unlock() return nil } func (s *store) Close() error { close(s.stopc) s.wg.Wait() return s.b.Close() } func (a *store) Equal(b *store) bool { if a.currentRev != b.currentRev { return false } if a.compactMainRev != b.compactMainRev { return false } return a.kvindex.Equal(b.kvindex) } // range is a keyword in Go, add Keys suffix. func (s *store) rangeKeys(key, end []byte, limit, rangeRev int64) (kvs []storagepb.KeyValue, rev int64, err error) { curRev := int64(s.currentRev.main) if s.currentRev.sub > 0 { curRev += 1 } if rangeRev > curRev { return nil, s.currentRev.main, ErrFutureRev } if rangeRev <= 0 { rev = curRev } else { rev = rangeRev } if rev <= s.compactMainRev { return nil, 0, ErrCompacted } _, revpairs := s.kvindex.Range(key, end, int64(rev)) if len(revpairs) == 0 { return nil, rev, nil } for _, revpair := range revpairs { revbytes := newRevBytes() revToBytes(revpair, revbytes) _, vs := s.tx.UnsafeRange(keyBucketName, revbytes, nil, 0) if len(vs) != 1 { log.Fatalf("storage: range cannot find rev (%d,%d)", revpair.main, revpair.sub) } e := &storagepb.Event{} if err := e.Unmarshal(vs[0]); err != nil { log.Fatalf("storage: cannot unmarshal event: %v", err) } kvs = append(kvs, *e.Kv) if limit > 0 && len(kvs) >= int(limit) { break } } return kvs, rev, nil } func (s *store) put(key, value []byte) { rev := s.currentRev.main + 1 c := rev // if the key exists before, use its previous created _, created, ver, err := s.kvindex.Get(key, rev) if err == nil { c = created.main } ibytes := newRevBytes() revToBytes(revision{main: rev, sub: s.currentRev.sub}, ibytes) ver = ver + 1 event := storagepb.Event{ Type: storagepb.PUT, Kv: &storagepb.KeyValue{ Key: key, Value: value, CreateRevision: c, ModRevision: rev, Version: ver, }, } d, err := event.Marshal() if err != nil { log.Fatalf("storage: cannot marshal event: %v", err) } s.tx.UnsafePut(keyBucketName, ibytes, d) s.kvindex.Put(key, revision{main: rev, sub: s.currentRev.sub}) s.currentRev.sub += 1 } func (s *store) deleteRange(key, end []byte) int64 { rrev := s.currentRev.main if s.currentRev.sub > 0 { rrev += 1 } keys, _ := s.kvindex.Range(key, end, rrev) if len(keys) == 0 { return 0 } for _, key := range keys { s.delete(key) } return int64(len(keys)) } func (s *store) delete(key []byte) { mainrev := s.currentRev.main + 1 ibytes := newRevBytes() revToBytes(revision{main: mainrev, sub: s.currentRev.sub}, ibytes) event := storagepb.Event{ Type: storagepb.DELETE, Kv: &storagepb.KeyValue{ Key: key, }, } d, err := event.Marshal() if err != nil { log.Fatalf("storage: cannot marshal event: %v", err) } s.tx.UnsafePut(keyBucketName, ibytes, d) err = s.kvindex.Tombstone(key, revision{main: mainrev, sub: s.currentRev.sub}) if err != nil { log.Fatalf("storage: cannot tombstone an existing key (%s): %v", string(key), err) } s.currentRev.sub += 1 }