mirror of
https://github.com/etcd-io/etcd.git
synced 2024-09-27 06:25:44 +00:00
182 lines
7.4 KiB
Python
Executable File
182 lines
7.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import sys
|
|
import os
|
|
import argparse
|
|
import logging
|
|
import pandas as pd
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.colors as colors
|
|
|
|
logging.basicConfig(format='[%(levelname)s %(asctime)s %(name)s] %(message)s')
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
params = None
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='plot graph using mixed read/write result file.')
|
|
parser.add_argument('input_file_a', type=str,
|
|
help='first input data files in csv format. (required)')
|
|
parser.add_argument('input_file_b', type=str, nargs='?',
|
|
help='second input data files in csv format. (optional)')
|
|
parser.add_argument('-t', '--title', dest='title', type=str, required=True,
|
|
help='plot graph title string')
|
|
parser.add_argument('-z', '--zero-centered', dest='zero', action='store_true', required=False,
|
|
help='plot the improvement graph with white color represents 0.0',
|
|
default=True)
|
|
parser.add_argument('--no-zero-centered', dest='zero', action='store_false', required=False,
|
|
help='plot the improvement graph without white color represents 0.0')
|
|
parser.add_argument('-o', '--output-image-file', dest='output', type=str, required=True,
|
|
help='output image filename')
|
|
parser.add_argument('-F', '--output-format', dest='format', type=str, default='png',
|
|
help='output image file format. default: jpg')
|
|
return parser.parse_args()
|
|
|
|
|
|
def load_data_files(*args):
|
|
df_list = []
|
|
try:
|
|
for i in args:
|
|
if i is not None:
|
|
logger.debug('loading csv file {}'.format(i))
|
|
df_list.append(pd.read_csv(i))
|
|
except FileNotFoundError as e:
|
|
logger.error(str(e))
|
|
sys.exit(1)
|
|
res = []
|
|
try:
|
|
for df in df_list:
|
|
param_df = df[df['type'] == 'PARAM']
|
|
param_str = ''
|
|
if len(param_df) != 0:
|
|
param_str = param_df['comment'].iloc[0]
|
|
new_df = df[df['type'] == 'DATA'][[
|
|
'ratio', 'conn_size', 'value_size']].copy()
|
|
cols = [x for x in df.columns if x.find('iter') != -1]
|
|
tmp = [df[df['type'] == 'DATA'][x].str.split(':') for x in cols]
|
|
|
|
read_df = [x.apply(lambda x: float(x[0])) for x in tmp]
|
|
read_avg = sum(read_df) / len(read_df)
|
|
new_df['read'] = read_avg
|
|
|
|
write_df = [x.apply(lambda x: float(x[1])) for x in tmp]
|
|
write_avg = sum(write_df) / len(write_df)
|
|
new_df['write'] = write_avg
|
|
|
|
new_df['ratio'] = new_df['ratio'].astype(float)
|
|
new_df['conn_size'] = new_df['conn_size'].astype(int)
|
|
new_df['value_size'] = new_df['value_size'].astype(int)
|
|
res.append({
|
|
'dataframe': new_df,
|
|
'param': param_str
|
|
})
|
|
except Exception as e:
|
|
logger.error(str(e))
|
|
sys.exit(1)
|
|
return res
|
|
|
|
|
|
# plot type is the type of the data to plot. Either 'read' or 'write'
|
|
def plot_data(title, plot_type, cmap_name_default, *args):
|
|
if len(args) == 1:
|
|
fig_size = (12, 16)
|
|
df0 = args[0]['dataframe']
|
|
df0param = args[0]['param']
|
|
fig = plt.figure(figsize=fig_size)
|
|
count = 0
|
|
for val, df in df0.groupby('ratio'):
|
|
count += 1
|
|
plt.subplot(4, 2, count)
|
|
plt.tripcolor(df['conn_size'], df['value_size'], df[plot_type])
|
|
plt.title('R/W Ratio {:.4f} [{:.2f}, {:.2f}]'.format(val, df[plot_type].min(),
|
|
df[plot_type].max()))
|
|
plt.yscale('log', base=2)
|
|
plt.ylabel('Value Size')
|
|
plt.xscale('log', base=2)
|
|
plt.xlabel('Connections Amount')
|
|
plt.colorbar()
|
|
plt.tight_layout()
|
|
fig.suptitle('{} [{}]\n{}'.format(title, plot_type.upper(), df0param))
|
|
elif len(args) == 2:
|
|
fig_size = (12, 26)
|
|
df0 = args[0]['dataframe']
|
|
df0param = args[0]['param']
|
|
df1 = args[1]['dataframe']
|
|
df1param = args[1]['param']
|
|
fig = plt.figure(figsize=fig_size)
|
|
col = 0
|
|
delta_df = df1.copy()
|
|
delta_df[[plot_type]] = ((df1[[plot_type]] - df0[[plot_type]]) /
|
|
df0[[plot_type]]) * 100
|
|
for tmp in [df0, df1, delta_df]:
|
|
row = 0
|
|
for val, df in tmp.groupby('ratio'):
|
|
pos = row * 3 + col + 1
|
|
plt.subplot(8, 3, pos)
|
|
norm = None
|
|
if col == 2:
|
|
cmap_name = 'bwr'
|
|
if params.zero:
|
|
norm = colors.CenteredNorm()
|
|
else:
|
|
cmap_name = cmap_name_default
|
|
plt.tripcolor(df['conn_size'], df['value_size'], df[plot_type],
|
|
norm=norm,
|
|
cmap=plt.get_cmap(cmap_name))
|
|
if row == 0:
|
|
if col == 0:
|
|
plt.title('{}\nR/W Ratio {:.4f} [{:.1f}, {:.1f}]'.format(
|
|
os.path.basename(params.input_file_a),
|
|
val, df[plot_type].min(), df[plot_type].max()))
|
|
elif col == 1:
|
|
plt.title('{}\nR/W Ratio {:.4f} [{:.1f}, {:.1f}]'.format(
|
|
os.path.basename(params.input_file_b),
|
|
val, df[plot_type].min(), df[plot_type].max()))
|
|
elif col == 2:
|
|
plt.title('Gain\nR/W Ratio {:.4f} [{:.2f}%, {:.2f}%]'.format(val, df[plot_type].min(),
|
|
df[plot_type].max()))
|
|
else:
|
|
if col == 2:
|
|
plt.title('R/W Ratio {:.4f} [{:.2f}%, {:.2f}%]'.format(val, df[plot_type].min(),
|
|
df[plot_type].max()))
|
|
else:
|
|
plt.title('R/W Ratio {:.4f} [{:.1f}, {:.1f}]'.format(val, df[plot_type].min(),
|
|
df[plot_type].max()))
|
|
plt.yscale('log', base=2)
|
|
plt.ylabel('Value Size')
|
|
plt.xscale('log', base=2)
|
|
plt.xlabel('Connections Amount')
|
|
|
|
if col == 2:
|
|
plt.colorbar(format='%.2f%%')
|
|
else:
|
|
plt.colorbar()
|
|
plt.tight_layout()
|
|
row += 1
|
|
col += 1
|
|
fig.suptitle('{} [{}]\n{} {}\n{} {}'.format(
|
|
title, plot_type.upper(), os.path.basename(params.input_file_a), df0param,
|
|
os.path.basename(params.input_file_b), df1param))
|
|
else:
|
|
raise Exception('invalid plot input data')
|
|
fig.subplots_adjust(top=0.93)
|
|
plt.savefig("{}_{}.{}".format(params.output, plot_type,
|
|
params.format), format=params.format)
|
|
|
|
|
|
def main():
|
|
global params
|
|
logging.basicConfig()
|
|
params = parse_args()
|
|
result = load_data_files(params.input_file_a, params.input_file_b)
|
|
for i in [('read', 'viridis'), ('write', 'plasma')]:
|
|
plot_type, cmap_name = i
|
|
plot_data(params.title, plot_type, cmap_name, *result)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|