etcd/raft/node.go
Yicheng Qin e4a6c9651a raft: add removed
The usage of removed:
1. tell removed node about its removal explicitly using msgDenied
2. prevent removed node disrupt cluster progress by launching leader election

It is set when apply node removal, or receive msgDenied.
2014-10-01 14:57:38 -07:00

312 lines
8.2 KiB
Go

package raft
import (
"errors"
"log"
pb "github.com/coreos/etcd/raft/raftpb"
"github.com/coreos/etcd/third_party/code.google.com/p/go.net/context"
)
var (
emptyState = pb.HardState{}
ErrStopped = errors.New("raft: stopped")
)
// SoftState provides state that is useful for logging and debugging.
// The state is volatile and does not need to be persisted to the WAL.
type SoftState struct {
Lead int64
RaftState StateType
ShouldStop bool
}
func (a *SoftState) equal(b *SoftState) bool {
return a.Lead == b.Lead && a.RaftState == b.RaftState && a.ShouldStop == b.ShouldStop
}
// Ready encapsulates the entries and messages that are ready to read,
// be saved to stable storage, committed or sent to other peers.
// All fields in Ready are read-only.
type Ready struct {
// The current volatile state of a Node.
// SoftState will be nil if there is no update.
// It is not required to consume or store SoftState.
*SoftState
// The current state of a Node to be saved to stable storage BEFORE
// Messages are sent.
// HardState will be equal to empty state if there is no update.
pb.HardState
// Entries specifies entries to be saved to stable storage BEFORE
// Messages are sent.
Entries []pb.Entry
// Snapshot specifies the snapshot to be saved to stable storage.
Snapshot pb.Snapshot
// CommittedEntries specifies entries to be committed to a
// store/state-machine. These have previously been committed to stable
// store.
CommittedEntries []pb.Entry
// Messages specifies outbound messages to be sent AFTER Entries are
// committed to stable storage.
Messages []pb.Message
}
func isHardStateEqual(a, b pb.HardState) bool {
return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
}
func IsEmptyHardState(st pb.HardState) bool {
return isHardStateEqual(st, emptyState)
}
func IsEmptySnap(sp pb.Snapshot) bool {
return sp.Index == 0
}
func (rd Ready) containsUpdates() bool {
return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) || !IsEmptySnap(rd.Snapshot) ||
len(rd.Entries) > 0 || len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0
}
type Node interface {
// Tick increments the internal logical clock for the Node by a single tick. Election
// timeouts and heartbeat timeouts are in units of ticks.
Tick()
// Campaign causes the Node to transition to candidate state and start campaigning to become leader.
Campaign(ctx context.Context) error
// Propose proposes that data be appended to the log.
Propose(ctx context.Context, data []byte) error
// ProposeConfChange proposes config change.
// At most one ConfChange can be in the process of going through consensus.
// Application needs to call ApplyConfChange when applying EntryConfChange type entry.
ProposeConfChange(ctx context.Context, cc pb.ConfChange) error
// Step advances the state machine using the given message. ctx.Err() will be returned, if any.
Step(ctx context.Context, msg pb.Message) error
// Ready returns a channel that returns the current point-in-time state
Ready() <-chan Ready
// ApplyConfChange applies config change to the local node.
// TODO: reject existing node when add node
// TODO: reject non-existant node when remove node
ApplyConfChange(cc pb.ConfChange)
// Stop performs any necessary termination of the Node
Stop()
// Compact
Compact(d []byte)
}
// StartNode returns a new Node given a unique raft id, a list of raft peers, and
// the election and heartbeat timeouts in units of ticks.
func StartNode(id int64, peers []int64, election, heartbeat int) Node {
n := newNode()
r := newRaft(id, peers, election, heartbeat)
go n.run(r)
return &n
}
// RestartNode is identical to StartNode but takes an initial State and a slice
// of entries. Generally this is used when restarting from a stable storage
// log.
func RestartNode(id int64, peers []int64, election, heartbeat int, snapshot *pb.Snapshot, st pb.HardState, ents []pb.Entry) Node {
n := newNode()
r := newRaft(id, peers, election, heartbeat)
if snapshot != nil {
r.restore(*snapshot)
}
r.loadState(st)
r.loadEnts(ents)
go n.run(r)
return &n
}
// node is the canonical implementation of the Node interface
type node struct {
propc chan pb.Message
recvc chan pb.Message
compactc chan []byte
confc chan pb.ConfChange
readyc chan Ready
tickc chan struct{}
done chan struct{}
}
func newNode() node {
return node{
propc: make(chan pb.Message),
recvc: make(chan pb.Message),
compactc: make(chan []byte),
confc: make(chan pb.ConfChange),
readyc: make(chan Ready),
tickc: make(chan struct{}),
done: make(chan struct{}),
}
}
func (n *node) Stop() {
close(n.done)
}
func (n *node) run(r *raft) {
var propc chan pb.Message
var readyc chan Ready
lead := None
prevSoftSt := r.softState()
prevHardSt := r.HardState
prevSnapi := r.raftLog.snapshot.Index
for {
rd := newReady(r, prevSoftSt, prevHardSt, prevSnapi)
if rd.containsUpdates() {
readyc = n.readyc
} else {
readyc = nil
}
if rd.SoftState != nil && lead != rd.SoftState.Lead {
log.Printf("raft: leader changed from %#x to %#x", lead, rd.SoftState.Lead)
lead = rd.SoftState.Lead
if r.hasLeader() {
propc = n.propc
} else {
propc = nil
}
}
select {
// TODO: maybe buffer the config propose if there exists one (the way
// described in raft dissertation)
// Currently it is dropped in Step silently.
case m := <-propc:
m.From = r.id
r.Step(m)
case m := <-n.recvc:
r.Step(m) // raft never returns an error
case d := <-n.compactc:
r.compact(d)
case cc := <-n.confc:
switch cc.Type {
case pb.ConfChangeAddNode:
r.addNode(cc.NodeID)
case pb.ConfChangeRemoveNode:
r.removeNode(cc.NodeID)
default:
panic("unexpected conf type")
}
case <-n.tickc:
r.tick()
case readyc <- rd:
if rd.SoftState != nil {
prevSoftSt = rd.SoftState
}
if !IsEmptyHardState(rd.HardState) {
prevHardSt = rd.HardState
}
if !IsEmptySnap(rd.Snapshot) {
prevSnapi = rd.Snapshot.Index
}
// TODO(yichengq): we assume that all committed config
// entries will be applied to make things easy for now.
// TODO(yichengq): it may have race because applied is set
// before entries are applied.
r.raftLog.resetNextEnts()
r.raftLog.resetUnstable()
r.msgs = nil
case <-n.done:
return
}
}
}
// Tick increments the internal logical clock for this Node. Election timeouts
// and heartbeat timeouts are in units of ticks.
func (n *node) Tick() {
select {
case n.tickc <- struct{}{}:
case <-n.done:
}
}
func (n *node) Campaign(ctx context.Context) error {
return n.step(ctx, pb.Message{Type: msgHup})
}
func (n *node) Propose(ctx context.Context, data []byte) error {
return n.step(ctx, pb.Message{Type: msgProp, Entries: []pb.Entry{{Data: data}}})
}
func (n *node) Step(ctx context.Context, m pb.Message) error {
// ignore unexpected local messages receiving over network
if m.Type == msgHup || m.Type == msgBeat {
// TODO: return an error?
return nil
}
return n.step(ctx, m)
}
func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error {
data, err := cc.Marshal()
if err != nil {
return err
}
return n.Step(ctx, pb.Message{Type: msgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange, Data: data}}})
}
// Step advances the state machine using msgs. The ctx.Err() will be returned,
// if any.
func (n *node) step(ctx context.Context, m pb.Message) error {
ch := n.recvc
if m.Type == msgProp {
ch = n.propc
}
select {
case ch <- m:
return nil
case <-ctx.Done():
return ctx.Err()
case <-n.done:
return ErrStopped
}
}
func (n *node) Ready() <-chan Ready {
return n.readyc
}
func (n *node) ApplyConfChange(cc pb.ConfChange) {
select {
case n.confc <- cc:
case <-n.done:
}
}
func (n *node) Compact(d []byte) {
select {
case n.compactc <- d:
case <-n.done:
}
}
func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState, prevSnapi int64) Ready {
rd := Ready{
Entries: r.raftLog.unstableEnts(),
CommittedEntries: r.raftLog.nextEnts(),
Messages: r.msgs,
}
if softSt := r.softState(); !softSt.equal(prevSoftSt) {
rd.SoftState = softSt
}
if !isHardStateEqual(r.HardState, prevHardSt) {
rd.HardState = r.HardState
}
if prevSnapi != r.raftLog.snapshot.Index {
rd.Snapshot = r.raftLog.snapshot
}
return rd
}