etcd/server/storage/mvcc/kvstore.go
caojiamingalan b9e30bf878 etcdserver: add e2e test to reproduce the incorrect hash issue when resuming scheduled compaction.
check ScheduledCompactKeyName and FinishedCompactKeyName
before writing hash to hashstore. If they do not match, then it means this compaction has once been interrupted and its hash value is invalid. In such cases, we won't write the hash values to the hashstore, and avoids the incorrect corruption alarm.

Signed-off-by: caojiamingalan <alan.c.19971111@gmail.com>
2023-06-07 19:54:09 -05:00

542 lines
14 KiB
Go

// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mvcc
import (
"context"
"errors"
"fmt"
"math"
"sync"
"time"
"go.etcd.io/etcd/api/v3/mvccpb"
"go.etcd.io/etcd/pkg/v3/schedule"
"go.etcd.io/etcd/pkg/v3/traceutil"
"go.etcd.io/etcd/server/v3/lease"
"go.etcd.io/etcd/server/v3/storage/backend"
"go.etcd.io/etcd/server/v3/storage/schema"
"go.uber.org/zap"
)
var (
ErrCompacted = errors.New("mvcc: required revision has been compacted")
ErrFutureRev = errors.New("mvcc: required revision is a future revision")
)
const (
// markedRevBytesLen is the byte length of marked revision.
// The first `revBytesLen` bytes represents a normal revision. The last
// one byte is the mark.
markedRevBytesLen = revBytesLen + 1
markBytePosition = markedRevBytesLen - 1
markTombstone byte = 't'
)
var restoreChunkKeys = 10000 // non-const for testing
var defaultCompactBatchLimit = 1000
var minimumBatchInterval = 10 * time.Millisecond
type StoreConfig struct {
CompactionBatchLimit int
CompactionSleepInterval time.Duration
}
type store struct {
ReadView
WriteView
cfg StoreConfig
// mu read locks for txns and write locks for non-txn store changes.
mu sync.RWMutex
b backend.Backend
kvindex index
le lease.Lessor
// revMuLock protects currentRev and compactMainRev.
// Locked at end of write txn and released after write txn unlock lock.
// Locked before locking read txn and released after locking.
revMu sync.RWMutex
// currentRev is the revision of the last completed transaction.
currentRev int64
// compactMainRev is the main revision of the last compaction.
compactMainRev int64
fifoSched schedule.Scheduler
stopc chan struct{}
lg *zap.Logger
hashes HashStorage
}
// NewStore returns a new store. It is useful to create a store inside
// mvcc pkg. It should only be used for testing externally.
func NewStore(lg *zap.Logger, b backend.Backend, le lease.Lessor, cfg StoreConfig) *store {
if lg == nil {
lg = zap.NewNop()
}
if cfg.CompactionBatchLimit == 0 {
cfg.CompactionBatchLimit = defaultCompactBatchLimit
}
if cfg.CompactionSleepInterval == 0 {
cfg.CompactionSleepInterval = minimumBatchInterval
}
s := &store{
cfg: cfg,
b: b,
kvindex: newTreeIndex(lg),
le: le,
currentRev: 1,
compactMainRev: -1,
fifoSched: schedule.NewFIFOScheduler(lg),
stopc: make(chan struct{}),
lg: lg,
}
s.hashes = newHashStorage(lg, s)
s.ReadView = &readView{s}
s.WriteView = &writeView{s}
if s.le != nil {
s.le.SetRangeDeleter(func() lease.TxnDelete { return s.Write(traceutil.TODO()) })
}
tx := s.b.BatchTx()
tx.LockOutsideApply()
tx.UnsafeCreateBucket(schema.Key)
schema.UnsafeCreateMetaBucket(tx)
tx.Unlock()
s.b.ForceCommit()
s.mu.Lock()
defer s.mu.Unlock()
if err := s.restore(); err != nil {
// TODO: return the error instead of panic here?
panic("failed to recover store from backend")
}
return s
}
func (s *store) compactBarrier(ctx context.Context, ch chan struct{}) {
if ctx == nil || ctx.Err() != nil {
select {
case <-s.stopc:
default:
// fix deadlock in mvcc, for more information, please refer to pr 11817.
// s.stopc is only updated in restore operation, which is called by apply
// snapshot call, compaction and apply snapshot requests are serialized by
// raft, and do not happen at the same time.
s.mu.Lock()
f := schedule.NewJob("kvstore_compactBarrier", func(ctx context.Context) { s.compactBarrier(ctx, ch) })
s.fifoSched.Schedule(f)
s.mu.Unlock()
}
return
}
close(ch)
}
func (s *store) hash() (hash uint32, revision int64, err error) {
// TODO: hash and revision could be inconsistent, one possible fix is to add s.revMu.RLock() at the beginning of function, which is costly
start := time.Now()
s.b.ForceCommit()
h, err := s.b.Hash(schema.DefaultIgnores)
hashSec.Observe(time.Since(start).Seconds())
return h, s.currentRev, err
}
func (s *store) hashByRev(rev int64) (hash KeyValueHash, currentRev int64, err error) {
var compactRev int64
start := time.Now()
s.mu.RLock()
s.revMu.RLock()
compactRev, currentRev = s.compactMainRev, s.currentRev
s.revMu.RUnlock()
if rev > 0 && rev < compactRev {
s.mu.RUnlock()
return KeyValueHash{}, 0, ErrCompacted
} else if rev > 0 && rev > currentRev {
s.mu.RUnlock()
return KeyValueHash{}, currentRev, ErrFutureRev
}
if rev == 0 {
rev = currentRev
}
keep := s.kvindex.Keep(rev)
tx := s.b.ReadTx()
tx.RLock()
defer tx.RUnlock()
s.mu.RUnlock()
hash, err = unsafeHashByRev(tx, compactRev, rev, keep)
hashRevSec.Observe(time.Since(start).Seconds())
return hash, currentRev, err
}
func (s *store) updateCompactRev(rev int64) (<-chan struct{}, int64, error) {
s.revMu.Lock()
if rev <= s.compactMainRev {
ch := make(chan struct{})
f := schedule.NewJob("kvstore_updateCompactRev_compactBarrier", func(ctx context.Context) { s.compactBarrier(ctx, ch) })
s.fifoSched.Schedule(f)
s.revMu.Unlock()
return ch, 0, ErrCompacted
}
if rev > s.currentRev {
s.revMu.Unlock()
return nil, 0, ErrFutureRev
}
compactMainRev := s.compactMainRev
s.compactMainRev = rev
SetScheduledCompact(s.b.BatchTx(), rev)
// ensure that desired compaction is persisted
// gofail: var compactBeforeCommitScheduledCompact struct{}
s.b.ForceCommit()
// gofail: var compactAfterCommitScheduledCompact struct{}
s.revMu.Unlock()
return nil, compactMainRev, nil
}
// checkPrevCompactionCompleted checks whether the previous scheduled compaction is completed.
func (s *store) checkPrevCompactionCompleted() bool {
tx := s.b.ReadTx()
tx.Lock()
defer tx.Unlock()
scheduledCompact, scheduledCompactFound := UnsafeReadScheduledCompact(tx)
finishedCompact, finishedCompactFound := UnsafeReadFinishedCompact(tx)
return scheduledCompact == finishedCompact && scheduledCompactFound == finishedCompactFound
}
func (s *store) compact(trace *traceutil.Trace, rev, prevCompactRev int64, prevCompactionCompleted bool) (<-chan struct{}, error) {
ch := make(chan struct{})
j := schedule.NewJob("kvstore_compact", func(ctx context.Context) {
if ctx.Err() != nil {
s.compactBarrier(ctx, ch)
return
}
hash, err := s.scheduleCompaction(rev, prevCompactRev)
if err != nil {
s.lg.Warn("Failed compaction", zap.Error(err))
s.compactBarrier(context.TODO(), ch)
return
}
// Only store the hash value if the previous hash is completed, i.e. this compaction
// hashes every revision from last compaction. For more details, see #15919.
if prevCompactionCompleted {
s.hashes.Store(hash)
} else {
s.lg.Info("previous compaction was interrupted, skip storing compaction hash value")
}
close(ch)
})
s.fifoSched.Schedule(j)
trace.Step("schedule compaction")
return ch, nil
}
func (s *store) compactLockfree(rev int64) (<-chan struct{}, error) {
prevCompactionCompleted := s.checkPrevCompactionCompleted()
ch, prevCompactRev, err := s.updateCompactRev(rev)
if err != nil {
return ch, err
}
return s.compact(traceutil.TODO(), rev, prevCompactRev, prevCompactionCompleted)
}
func (s *store) Compact(trace *traceutil.Trace, rev int64) (<-chan struct{}, error) {
s.mu.Lock()
prevCompactionCompleted := s.checkPrevCompactionCompleted()
ch, prevCompactRev, err := s.updateCompactRev(rev)
trace.Step("check and update compact revision")
if err != nil {
s.mu.Unlock()
return ch, err
}
s.mu.Unlock()
return s.compact(trace, rev, prevCompactRev, prevCompactionCompleted)
}
func (s *store) Commit() {
s.mu.Lock()
defer s.mu.Unlock()
s.b.ForceCommit()
}
func (s *store) Restore(b backend.Backend) error {
s.mu.Lock()
defer s.mu.Unlock()
close(s.stopc)
s.fifoSched.Stop()
s.b = b
s.kvindex = newTreeIndex(s.lg)
{
// During restore the metrics might report 'special' values
s.revMu.Lock()
s.currentRev = 1
s.compactMainRev = -1
s.revMu.Unlock()
}
s.fifoSched = schedule.NewFIFOScheduler(s.lg)
s.stopc = make(chan struct{})
return s.restore()
}
func (s *store) restore() error {
s.setupMetricsReporter()
min, max := newRevBytes(), newRevBytes()
revToBytes(revision{main: 1}, min)
revToBytes(revision{main: math.MaxInt64, sub: math.MaxInt64}, max)
keyToLease := make(map[string]lease.LeaseID)
// restore index
tx := s.b.ReadTx()
tx.Lock()
finishedCompact, found := UnsafeReadFinishedCompact(tx)
if found {
s.revMu.Lock()
s.compactMainRev = finishedCompact
s.lg.Info(
"restored last compact revision",
zap.String("meta-bucket-name-key", string(schema.FinishedCompactKeyName)),
zap.Int64("restored-compact-revision", s.compactMainRev),
)
s.revMu.Unlock()
}
scheduledCompact, _ := UnsafeReadScheduledCompact(tx)
// index keys concurrently as they're loaded in from tx
keysGauge.Set(0)
rkvc, revc := restoreIntoIndex(s.lg, s.kvindex)
for {
keys, vals := tx.UnsafeRange(schema.Key, min, max, int64(restoreChunkKeys))
if len(keys) == 0 {
break
}
// rkvc blocks if the total pending keys exceeds the restore
// chunk size to keep keys from consuming too much memory.
restoreChunk(s.lg, rkvc, keys, vals, keyToLease)
if len(keys) < restoreChunkKeys {
// partial set implies final set
break
}
// next set begins after where this one ended
newMin := bytesToRev(keys[len(keys)-1][:revBytesLen])
newMin.sub++
revToBytes(newMin, min)
}
close(rkvc)
{
s.revMu.Lock()
s.currentRev = <-revc
// keys in the range [compacted revision -N, compaction] might all be deleted due to compaction.
// the correct revision should be set to compaction revision in the case, not the largest revision
// we have seen.
if s.currentRev < s.compactMainRev {
s.currentRev = s.compactMainRev
}
s.revMu.Unlock()
}
if scheduledCompact <= s.compactMainRev {
scheduledCompact = 0
}
for key, lid := range keyToLease {
if s.le == nil {
tx.Unlock()
panic("no lessor to attach lease")
}
err := s.le.Attach(lid, []lease.LeaseItem{{Key: key}})
if err != nil {
s.lg.Error(
"failed to attach a lease",
zap.String("lease-id", fmt.Sprintf("%016x", lid)),
zap.Error(err),
)
}
}
tx.Unlock()
s.lg.Info("kvstore restored", zap.Int64("current-rev", s.currentRev))
if scheduledCompact != 0 {
if _, err := s.compactLockfree(scheduledCompact); err != nil {
s.lg.Warn("compaction encountered error", zap.Error(err))
}
s.lg.Info(
"resume scheduled compaction",
zap.Int64("scheduled-compact-revision", scheduledCompact),
)
}
return nil
}
type revKeyValue struct {
key []byte
kv mvccpb.KeyValue
kstr string
}
func restoreIntoIndex(lg *zap.Logger, idx index) (chan<- revKeyValue, <-chan int64) {
rkvc, revc := make(chan revKeyValue, restoreChunkKeys), make(chan int64, 1)
go func() {
currentRev := int64(1)
defer func() { revc <- currentRev }()
// restore the tree index from streaming the unordered index.
kiCache := make(map[string]*keyIndex, restoreChunkKeys)
for rkv := range rkvc {
ki, ok := kiCache[rkv.kstr]
// purge kiCache if many keys but still missing in the cache
if !ok && len(kiCache) >= restoreChunkKeys {
i := 10
for k := range kiCache {
delete(kiCache, k)
if i--; i == 0 {
break
}
}
}
// cache miss, fetch from tree index if there
if !ok {
ki = &keyIndex{key: rkv.kv.Key}
if idxKey := idx.KeyIndex(ki); idxKey != nil {
kiCache[rkv.kstr], ki = idxKey, idxKey
ok = true
}
}
rev := bytesToRev(rkv.key)
currentRev = rev.main
if ok {
if isTombstone(rkv.key) {
if err := ki.tombstone(lg, rev.main, rev.sub); err != nil {
lg.Warn("tombstone encountered error", zap.Error(err))
}
continue
}
ki.put(lg, rev.main, rev.sub)
} else if !isTombstone(rkv.key) {
ki.restore(lg, revision{rkv.kv.CreateRevision, 0}, rev, rkv.kv.Version)
idx.Insert(ki)
kiCache[rkv.kstr] = ki
}
}
}()
return rkvc, revc
}
func restoreChunk(lg *zap.Logger, kvc chan<- revKeyValue, keys, vals [][]byte, keyToLease map[string]lease.LeaseID) {
for i, key := range keys {
rkv := revKeyValue{key: key}
if err := rkv.kv.Unmarshal(vals[i]); err != nil {
lg.Fatal("failed to unmarshal mvccpb.KeyValue", zap.Error(err))
}
rkv.kstr = string(rkv.kv.Key)
if isTombstone(key) {
delete(keyToLease, rkv.kstr)
} else if lid := lease.LeaseID(rkv.kv.Lease); lid != lease.NoLease {
keyToLease[rkv.kstr] = lid
} else {
delete(keyToLease, rkv.kstr)
}
kvc <- rkv
}
}
func (s *store) Close() error {
close(s.stopc)
s.fifoSched.Stop()
return nil
}
func (s *store) setupMetricsReporter() {
b := s.b
reportDbTotalSizeInBytesMu.Lock()
reportDbTotalSizeInBytes = func() float64 { return float64(b.Size()) }
reportDbTotalSizeInBytesMu.Unlock()
reportDbTotalSizeInUseInBytesMu.Lock()
reportDbTotalSizeInUseInBytes = func() float64 { return float64(b.SizeInUse()) }
reportDbTotalSizeInUseInBytesMu.Unlock()
reportDbOpenReadTxNMu.Lock()
reportDbOpenReadTxN = func() float64 { return float64(b.OpenReadTxN()) }
reportDbOpenReadTxNMu.Unlock()
reportCurrentRevMu.Lock()
reportCurrentRev = func() float64 {
s.revMu.RLock()
defer s.revMu.RUnlock()
return float64(s.currentRev)
}
reportCurrentRevMu.Unlock()
reportCompactRevMu.Lock()
reportCompactRev = func() float64 {
s.revMu.RLock()
defer s.revMu.RUnlock()
return float64(s.compactMainRev)
}
reportCompactRevMu.Unlock()
}
// appendMarkTombstone appends tombstone mark to normal revision bytes.
func appendMarkTombstone(lg *zap.Logger, b []byte) []byte {
if len(b) != revBytesLen {
lg.Panic(
"cannot append tombstone mark to non-normal revision bytes",
zap.Int("expected-revision-bytes-size", revBytesLen),
zap.Int("given-revision-bytes-size", len(b)),
)
}
return append(b, markTombstone)
}
// isTombstone checks whether the revision bytes is a tombstone.
func isTombstone(b []byte) bool {
return len(b) == markedRevBytesLen && b[markBytePosition] == markTombstone
}
func (s *store) HashStorage() HashStorage {
return s.hashes
}