;(function(){ /* Security, Encryption, and Authorization: SEA.js */ // NECESSARY PRE-REQUISITE: http://gun.js.org/explainers/data/security.html /* THIS IS AN EARLY ALPHA!!! */ if(typeof require !== "undefined"){ var Gun = require('./gun') } if(typeof window !== "undefined"){ var Gun = window.Gun } // let's extend the gun chain with a `user` function. // only one user can be logged in at a time, per gun instance. Gun.chain.user = function(){ var root = this.back(-1); // always reference the root gun instance. var user = root._.user || (root._.user = root.chain()); // create a user context. user.create = User.create; // attach a factory method to it. user.auth = User.auth; // and a login method. return user; // return the user! } // EXAMPLE! Use it this way: ;(function(){return; localStorage.clear(); var gun = Gun(); var user = gun.user(); gun.on('auth', function(at){ // do something once logged in. }); gun.on('secure', function(at){ // enforce some rules about shared app level data var no; if(no){ return } this.to.next(at); }); user.create("test", "password"); // create a user from a username alias and a password phrase. user.auth("test", "password"); // authenticate and log in the user! }()); // How does it work? function User(){}; // Well first we have to actually create a user. That is what this function does. User.create = function(alias, pass, cb){ var root = this.back(-1); cb = cb || function(){}; // Because more than 1 user might have the same username, we treat the alias as a list of those users. root.get('alias/'+alias).get(function(at, ev){ ev.off(); if(at.put){ // If we can enforce that a user name is already taken, it might be nice to try, but this is not guaranteed. return cb({err: Gun.log("User already created!")}); } var user = {alias: alias, salt: Gun.text.random(64)}; // pseudo-randomly create a salt, then use CryptoJS's PBKDF2 function to extend the password with it. SEA.proof(pass, user.salt, function(proof){ // this will take some short amount of time to produce a proof, which slows brute force attacks. var pair = SEA.pair(); // now we have generated a brand new ECDSA key pair for the user account. user.pub = pair.pub; // the user's public key doesn't need to be signed. But everything else needs to be signed with it! user.alias = SEA.write(alias, pair.priv); user.salt = SEA.write(user.salt, pair.priv); // to keep the private key safe, we AES encrypt it with the proof of work! user.auth = SEA.write(SEA.en(pair.priv, proof), pair.priv); var tmp = 'pub/'+pair.pub; //console.log("create", user, pair.pub); // awesome, now we can actually save the user with their public key as their ID. root.get(tmp).put(user); // next up, we want to associate the alias with the public key. So we add it to the alias list. var ref = root.get('alias/'+alias).put(Gun.obj.put({}, tmp, Gun.val.rel.ify(tmp))); // callback that the user has been created. (Note: ok = 0 because we didn't wait for disk to ack) cb({ok: 0, pub: pair.pub}); }); }); } // now that we have created a user, we want to authenticate them! User.auth = function(alias, pass, cb){ var root = this.back(-1); cb = cb || function(){}; // load all public keys associated with the username alias we want to log in with. root.get('alias/'+alias).get(function(at, ev){ ev.off(); if(!at.put){ // if no user, don't do anything. return cb({err: Gun.log("No user!")}); } // then attempt to log into each one until we find ours! // (if two users have the same username AND the same password... that would be bad) Gun.obj.map(at.put, function(val, key){ // grab the account associated with this public key. root.get(key).get(function(at, ev){ key = key.slice(4); ev.off(); if(!at.put){ return cb({err: "Public key does not exist!"}) } // attempt to PBKDF2 extend the password with the salt. (Verifying the signature gives us the plain text salt.) SEA.proof(pass, SEA.read(at.put.salt, key), function(proof){ // the proof of work is evidence that we've spent some time/effort trying to log in, this slows brute force. var priv = SEA.de(SEA.read(at.put.auth, key), proof); // now we have AES decrypted the private key, from when we encrypted it with the proof at registration. if(priv){ // if we were successful, then that means... // we're logged in! var user = root._.user; // add our credentials in-memory only to our root gun instance user._ = at.gun._; // so that way we can use the credentials to encrypt/decrypt data user._.is = user.is = {}; // that is input/output through gun (see below) user._.sea = priv; user._.pub = key; //console.log("authorized", user._); // callbacks success with the user data credentials. cb(user._); // emit an auth event, useful for page redirects and stuff. root.on('auth', user._); return; } // Or else we failed to log in... console.log("Failed to sign in!"); cb({err: "Attempt failed"}); }); }); }); }); } // After we have a GUN extension to make user registration/login easy, we then need to handle everything else. // We do this with a GUN adapter, we first listen to when a gun instance is created (and when its options change) Gun.on('opt', function(at){ if(!at.sea){ // only add SEA once per instance, on the "at" context. at.sea = {own: {}}; at.gun.on('in', security, at); // now listen to all input data, acting as a firewall. at.gun.on('out', signature, at); // and output listeners, to encrypt outgoing data. at.gun.on('node', every, at); } this.to.next(at); // make sure to call the "next" middleware adapter. }); // Alright, this next adapter gets run at the per node level in the graph database. // This will let us verify that every property on a node has a value signed by a public key we trust. // If the signature does not match, the data is just `undefined` so it doesn't get passed on. // If it does match, then we transform the in-memory "view" of the data into its plain value (without the signature). // Now NOTE! Some data is "system" data, not user data. Example: List of public keys, aliases, etc. // This data is self-enforced (the value can only match its ID), but that is handled in the `security` function. // From the self-enforced data, we can see all the edges in the graph that belong to a public key. // Example: pub/ASDF is the ID of a node with ASDF as its public key, signed alias and salt, and // its encrypted private key, but it might also have other signed values on it like `profile = ` edge. // Using that directed edge's ID, we can then track (in memory) which IDs belong to which keys. // Here is a problem: Multiple public keys can "claim" any node's ID, so this is dangerous! // This means we should ONLY trust our "friends" (our key ring) public keys, not any ones. // I have not yet added that to SEA yet in this alpha release. That is coming soon, but beware in the meanwhile! function every(at){ var own = (at.gun.back(-1)._).sea.own, soul = at.get, pub = own[soul] || soul.slice(4), vertex = (at.gun._).put; Gun.node.is(at.put, function(val, key, node){ // for each property on the node. vertex[key] = node[key] = val = SEA.read(val, pub); // verify signature and get plain value. if(val && val['#'] && (key = Gun.val.rel.is(val))){ // if it is a relation / edge if('alias/' === soul.slice(0,6)){ return } // if it is itself own[key] = pub; // associate the public key with a node } }); }; // signature handles data output, it is a proxy to the security function. function signature(at){ at.user = at.gun.back(-1)._.user; security.call(this, at); } // okay! The security function handles all the heavy lifting. // It needs to deal read and write of input and output of system data, account/public key data, and regular data. // This is broken down into some pretty clear edge cases, let's go over them: function security(at){ var cat = this.as, sea = cat.sea, to = this.to; if(at.get){ // if there is a request to read data from us, then... var soul = at.get['#']; if(soul){ // for now, only allow direct IDs to be read. if('alias' === soul){ // Allow reading the list of usernames/aliases in the system? return to.next(at); // yes. } else if('alias/' === soul.slice(0,6)){ // Allow reading the list of public keys associated with an alias? return to.next(at); // yes. } else { // Allow reading everything? return to.next(at); // yes // TODO: No! Make this a callback/event that people can filter on. } } } if(at.put){ // if there is a request to write data to us, then... var no, tmp, u; Gun.obj.map(at.put, function(node, soul){ // for each over every node in the graph if(no){ return no = true } if(Gun.obj.empty(node, '_')){ return } // ignore empty updates, don't reject them. if('alias' === soul){ // special case for shared system data, the list of aliases. Gun.obj.map(node, function(val, key){ // for each over the node to look at each property/value. if('_' === key){ return } // ignore meta data if(!val){ return no = true } // data MUST exist if('alias/'+key !== Gun.val.rel.is(val)){ // in fact, it must be EXACTLY equal to itself return no = true; // if it isn't, reject. } }); } else if('alias/' === soul.slice(0,6)){ // special case for shared system data, the list of public keys for an alias. Gun.obj.map(node, function(val, key){ // for each over the node to look at each property/value. if('_' === key){ return } // ignore meta data if(!val){ return no = true } // data MUST exist if(key === Gun.val.rel.is(val)){ return } // and the ID must be EXACTLY equal to its property return no = true; // that way nobody can tamper with the list of public keys. }); } else if('pub/' === soul.slice(0,4)){ // special case, account data for a public key. tmp = soul.slice(4); // ignore the 'pub/' prefix on the public key. Gun.obj.map(node, function(val, key){ // for each over the account data, looking at each property/value. if('_' === key){ return } // ignore meta data. if('pub' === key){ if(val === tmp){ return } // the account MUST have a `pub` property that equals the ID of the public key. return no = true; // if not, reject the update. } if(at.user){ // if we are logged in if(tmp === at.user._.pub){ // as this user val = node[key] = SEA.write(val, at.user._.sea); // then sign our updates as we output them. } // (if we are lying about our signature, other peer's will reject our update) } if(u === (val = SEA.read(val, tmp))){ // make sure the signature matches the account it claims to be on. return no = true; // reject any updates that are signed with a mismatched account. } }); } else if(at.user && (tmp = at.user._.sea)){ // not special case, if we are logged in, then Gun.obj.map(node, function(val, key){ // any data we output needs to if('_' === key){ return } node[key] = SEA.write(val, tmp); // be signed by our logged in account. }); } else // TODO: BUG! These two if-statements are not exclusive to each other!!! if(tmp = sea.own[soul]){ // not special case, if we receive an update on an ID associated with a public key, then Gun.obj.map(node, function(val, key){ // for each over the property/values if('_' === key){ return } if(u === (val = SEA.read(val, tmp))){ // and verify they were signed by the associated public key! return no = true; // reject the update if it fails to match. } }); } else { // reject any/all other updates by default. return no = true; } }); if(no){ // if we got a rejection then... if(!at || !Gun.tag.secure){ return } cat.on('secure', function(at){ // (below) emit a special event for the developer to handle security. this.off(); if(!at){ return } to.next(at); // and if they went ahead and explicitly called "next" (to us) with data, then approve. }); cat.on('secure', at); return; // else wise, reject. } //console.log("SEA put", at.put); // if we did not get a rejection, then pass forward to the "next" adapter middleware. return to.next(at); } to.next(at); // pass forward any data we do not know how to handle or process (this allows custom security protocols). } function SEA(){}; // create a wrapper library around CryptoJS and JSRSAsign. // of course, these libraries are required. A bundle is included in lib/cryptography.js if(typeof CryptoJS === "undefined"){ console.log("Error: CryptoJS required!") } if(typeof KJUR === "undefined"){ console.log("Error: JSRSAsign required!") } // now wrap the various AES, ECDSA, PBKDF2 functions we called above. SEA.proof = function(pass,salt,cb){ cb(CryptoJS.PBKDF2(pass, salt, {keySize: 512/32, iterations: 100}).toString(CryptoJS.enc.Base64)); }; SEA.pair = function(){ var master = new KJUR.crypto.ECDSA({"curve": 'secp256r1'}); var pair = master.generateKeyPairHex(); return {pub: pair.ecpubhex, priv: pair.ecprvhex}; }; SEA.sign = function(m, p){ var sig = new KJUR.crypto.Signature({'alg': 'SHA256withECDSA'}); sig.initSign({'ecprvhex': p, 'eccurvename': 'secp256r1'}); sig.updateString(JSON.stringify(m)); return sig.sign(); } SEA.verify = function(m, p, s){ var sig = new KJUR.crypto.Signature({'alg': 'SHA256withECDSA', 'prov': "cryptojs/jsrsa"}), yes; try{ sig.initVerifyByPublicKey({'ecpubhex': p, 'eccurvename': 'secp256r1'}); sig.updateString(JSON.stringify(m)); yes = sig.verify(s); }catch(e){Gun.log(e)} return yes; } SEA.write = function(m, p){ return 'SEA'+JSON.stringify([m,SEA.sign(m,p)]); return JSON.stringify([m,SEA.sign(m,p)]); } SEA.read = function(m, p){ if(!m){ return } if(!m.slice || 'SEA[' !== m.slice(0,4)){ return m } m = m.slice(3); try{m = JSON.parse(m); }catch(e){ return } m = m || ''; if(SEA.verify(m[0], p, m[1])){ return m[0]; } } SEA.en = function(m, p){ return CryptoJS.AES.encrypt(JSON.stringify(m), p, {format:SEA.froto}).toString(); }; SEA.de = function(m, p){ var r; try{r = CryptoJS.AES.decrypt(m, p, {format:SEA.froto}).toString(CryptoJS.enc.Utf8); r = JSON.parse(r); }catch(e){}; return r; }; SEA.froto = {stringify:function(a){var b={ct:a.ciphertext.toString(CryptoJS.enc.Base64)};a.iv&&(b.iv=a.iv.toString());a.salt&&(b.s=a.salt.toString());return JSON.stringify(b)},parse:function(a){a=JSON.parse(a);var b=CryptoJS.lib.CipherParams.create({ciphertext:CryptoJS.enc.Base64.parse(a.ct)});a.iv&&(b.iv=CryptoJS.enc.Hex.parse(a.iv));a.s&&(b.salt=CryptoJS.enc.Hex.parse(a.s));return b}}; Gun.SEA = SEA; // all done! // Obviously it is missing MANY necessary features. This is only an alpha release. // Please experiment with it, audit what I've done so far, and complain about what needs to be added. // SEA should be a full suite that is easy and seamless to use. // Again, scroll naer the top, where I provide an EXAMPLE of how to create a user and sign in. // Once logged in, the rest of the code you just read handled automatically signing/validating data. // But all other behavior needs to be equally easy, like opinionated ways of // Adding friends (trusted public keys), sending private messages, etc. // Cheers! Tell me what you think. }());