gun/sea.js
2017-08-29 23:57:39 +03:00

543 lines
24 KiB
JavaScript

;(function(){
/*
Security, Encryption, and Authorization: SEA.js
*/
// NECESSARY PRE-REQUISITE: http://gun.js.org/explainers/data/security.html
/* THIS IS AN EARLY ALPHA!!! */
var nodeCrypto = require('crypto');
var ecCrypto = require('eccrypto');
var Gun = (typeof window !== 'undefined' ? window : global).Gun || require('./gun');
// Following enable Web Cryptography API use in NodeJS
var crypto = (typeof window !== 'undefined' && window.crypto)
|| { subtle: require('subtle') };
var TextEncoder = (typeof window !== 'undefined' && window.TextEncoder)
|| require('text-encoding').TextEncoder;
var TextDecoder = (typeof window !== 'undefined' && window.TextDecoder)
|| require('text-encoding').TextDecoder;
if(typeof Buffer === 'undefined'){
var Buffer = require('buffer').Buffer;
}
var pbkdf2 = {
hash: 'SHA-256', // Was 'SHA-1'
iter: 50000,
ks: 64
};
var ecdh = {
enc: (typeof window !== 'undefined' && 'secp256r1') || 'prime256v1'
};
var aes = {
enc: 'aes-256-cbc'
};
// let's extend the gun chain with a `user` function.
// only one user can be logged in at a time, per gun instance.
Gun.chain.user = function(){
var root = this.back(-1); // always reference the root gun instance.
var user = root._.user || (root._.user = root.chain()); // create a user context.
user.create = User.create; // attach a factory method to it.
user.auth = User.auth; // and a login method.
user.remember = User.remember; // and a credentials persisting method.
return user; // return the user!
}
// EXAMPLE! Use it this way:
;(function(){return;
localStorage.clear();
var gun = Gun();
var user = gun.user();
Gun.on('auth', function(at){
// do something once logged in.
});
Gun.on('secure', function(at){
// enforce some rules about shared app level data
var no;
if(no){ return }
this.to.next(at);
});
user.create("test", "password"); // create a user from a username alias and a password phrase.
user.auth("test", "password"); // authenticate and log in the user!
}());
// How does it work?
function User(){};
// Well first we have to actually create a user. That is what this function does.
User.create = function(alias, pass, cb){
var root = this.back(-1);
var doCreate = function(resolve, reject){
// Because more than 1 user might have the same username, we treat the alias as a list of those users.
root.get('alias/'+alias).get(function(at, ev){
ev.off();
if(at.put){
// If we can enforce that a user name is already taken, it might be nice to try, but this is not guaranteed.
var err = 'User already created!';
Gun.log(err);
return reject({err: err});
}
var user = {alias: alias, salt: Gun.text.random(64)};
// pseudo-randomly create a salt, then use CryptoJS's PBKDF2 function to extend the password with it.
SEA.proof(pass, user.salt).then(function(proof){
// this will take some short amount of time to produce a proof, which slows brute force attacks.
SEA.pair().then(function(pair){
// now we have generated a brand new ECDSA key pair for the user account.
user.pub = pair.pub;
// the user's public key doesn't need to be signed. But everything else needs to be signed with it!
SEA.write(alias, pair.priv).then(function(sAlias){
user.alias = sAlias;
return SEA.write(user.salt, pair.priv);
}).then(function(sSalt){
user.salt = sSalt;
// to keep the private key safe, we AES encrypt it with the proof of work!
return SEA.en(pair.priv, proof);
}).then(function(encVal){
return SEA.write(encVal, pair.priv);
}).then(function(sAuth){
user.auth = sAuth;
var tmp = 'pub/'+pair.pub;
//console.log("create", user, pair.pub);
// awesome, now we can actually save the user with their public key as their ID.
root.get(tmp).put(user);
// next up, we want to associate the alias with the public key. So we add it to the alias list.
var ref = root.get('alias/'+alias).put(Gun.obj.put({}, tmp, Gun.val.rel.ify(tmp)));
// callback that the user has been created. (Note: ok = 0 because we didn't wait for disk to ack)
resolve({ok: 0, pub: pair.pub});
});
});
});
});
};
if (cb){doCreate(cb, cb)} else {return new Promise(doCreate)}
};
// now that we have created a user, we want to authenticate them!
User.auth = function(props, cb){
var alias = props.alias, pass = props.pass, newpass = props.newpass;
var root = this.back(-1);
var doAuth = function(resolve, reject){
// load all public keys associated with the username alias we want to log in with.
root.get('alias/'+alias).get(function(at, ev){
ev.off();
if(!at.put){
// if no user, don't do anything.
var err = 'No user!';
Gun.log(err);
return reject({err: err});
}
// then attempt to log into each one until we find ours!
// (if two users have the same username AND the same password... that would be bad)
Gun.obj.map(at.put, function(val, key){
// grab the account associated with this public key.
root.get(key).get(function(at, ev){
key = key.slice(4);
ev.off();
if(!at.put){return}
// attempt to PBKDF2 extend the password with the salt. (Verifying the signature gives us the plain text salt.)
SEA.read(at.put.salt, key).then(function(salt){
return SEA.proof(pass, salt);
}).then(function(proof){
// the proof of work is evidence that we've spent some time/effort trying to log in, this slows brute force.
return SEA.read(at.put.auth, key).then(function(auth){
return SEA.de(auth, proof);
});
}).then(function(priv){
// now we have AES decrypted the private key, from when we encrypted it with the proof at registration.
if(priv){ // if we were successful, then that means...
// we're logged in!
function doLogin(){
var user = root._.user;
// add our credentials in-memory only to our root gun instance
user._ = at.gun._;
// so that way we can use the credentials to encrypt/decrypt data
user._.is = user.is = {};
// that is input/output through gun (see below)
user._.sea = priv;
user._.pub = key;
//console.log("authorized", user._);
// callbacks success with the user data credentials.
resolve(user._);
// emit an auth event, useful for page redirects and stuff.
Gun.on('auth', user._);
}
if(newpass) {
// password update so encrypt private key using new pwd + salt
var newsalt = Gun.text.random(64);
SEA.proof(newpass, newsalt).then(function(proof){
SEA.en(priv, proof).then(function(encVal){
return SEA.write(encVal, priv).then(function(sAuth){
return { pub: key, auth: sAuth };
});
}).then(function(user){
return SEA.write(alias, priv).then(function(sAlias){
user.alias = sAlias; return user;
});
}).then(function(user){
return SEA.write(newsalt, priv).then(function(sSalt){
user.salt = sSalt; return user;
});
}).then(function(user){
var tmp = 'pub/'+key;
// awesome, now we can update the user using public key ID.
root.get(tmp).put(user);
// then we're done
doLogin();
});
});
} else {
doLogin();
}
return;
}
// Or else we failed to log in...
}).catch(function(e){
Gun.log('Failed to sign in!');
reject({err: 'Attempt failed'});
});
});
// if (!found) {
// reject({err: 'Public key does not exist!'})
// }
});
});
};
if (cb){doAuth(cb, cb)} else {return new Promise(doAuth)}
};
// now that we have created a user, we want to authenticate them!
User.remember = function(props, cb){
var doRemember = function(resolve, reject){
Gun.log('User.remember is TODO: still');
reject({ err: 'Not implemented.' });
}
if (cb){doRemember(cb, cb)} else {return new Promise(doRemember)}
};
// After we have a GUN extension to make user registration/login easy, we then need to handle everything else.
// We do this with a GUN adapter, we first listen to when a gun instance is created (and when its options change)
Gun.on('opt', function(at){
if(!at.sea){ // only add SEA once per instance, on the "at" context.
at.sea = {own: {}};
at.gun.on('in', security, at); // now listen to all input data, acting as a firewall.
at.gun.on('out', signature, at); // and output listeners, to encrypt outgoing data.
}
this.to.next(at); // make sure to call the "next" middleware adapter.
});
// Alright, this next adapter gets run at the per node level in the graph database.
// This will let us verify that every property on a node has a value signed by a public key we trust.
// If the signature does not match, the data is just `undefined` so it doesn't get passed on.
// If it does match, then we transform the in-memory "view" of the data into its plain value (without the signature).
// Now NOTE! Some data is "system" data, not user data. Example: List of public keys, aliases, etc.
// This data is self-enforced (the value can only match its ID), but that is handled in the `security` function.
// From the self-enforced data, we can see all the edges in the graph that belong to a public key.
// Example: pub/ASDF is the ID of a node with ASDF as its public key, signed alias and salt, and
// its encrypted private key, but it might also have other signed values on it like `profile = <ID>` edge.
// Using that directed edge's ID, we can then track (in memory) which IDs belong to which keys.
// Here is a problem: Multiple public keys can "claim" any node's ID, so this is dangerous!
// This means we should ONLY trust our "friends" (our key ring) public keys, not any ones.
// I have not yet added that to SEA yet in this alpha release. That is coming soon, but beware in the meanwhile!
Gun.on('node', function(at){ // TODO: Warning: Need to switch to `gun.on('node')`! Do not use `Gun.on('node'` in your apps!
var own = (at.gun.back(-1)._).sea.own, soul = at.get, pub = own[soul] || soul.slice(4), vertex = (at.gun._).put;
Gun.node.is(at.put, function(val, key, node){ // for each property on the node.
SEA.read(val, pub).then(function(data){
vertex[key] = node[key] = val = data; // verify signature and get plain value.
if(val && val['#'] && (key = Gun.val.rel.is(val))){ // if it is a relation / edge
if('alias/' === soul.slice(0,6)){ return } // if it is itself
own[key] = pub; // associate the public key with a node
}
});
});
})
// signature handles data output, it is a proxy to the security function.
function signature(at){
at.user = at.gun.back(-1)._.user;
security.call(this, at);
}
// okay! The security function handles all the heavy lifting.
// It needs to deal read and write of input and output of system data, account/public key data, and regular data.
// This is broken down into some pretty clear edge cases, let's go over them:
function security(at){
var cat = this.as, sea = cat.sea, to = this.to;
if(at.get){
// if there is a request to read data from us, then...
var soul = at.get['#'];
if(soul){ // for now, only allow direct IDs to be read.
if('alias' === soul){ // Allow reading the list of usernames/aliases in the system?
return to.next(at); // yes.
} else
if('alias/' === soul.slice(0,6)){ // Allow reading the list of public keys associated with an alias?
return to.next(at); // yes.
} else { // Allow reading everything?
return to.next(at); // yes // TODO: No! Make this a callback/event that people can filter on.
}
}
}
if(at.put){
// if there is a request to write data to us, then...
var no, tmp, u;
Gun.obj.map(at.put, function(node, soul){ // for each over every node in the graph
if(no){ return no = true }
if(Gun.obj.empty(node, '_')){ return } // ignore empty updates, don't reject them.
if('alias' === soul){ // special case for shared system data, the list of aliases.
Gun.obj.map(node, function(val, key){ // for each over the node to look at each property/value.
if('_' === key){ return } // ignore meta data
if(!val){ return no = true } // data MUST exist
if('alias/'+key !== Gun.val.rel.is(val)){ // in fact, it must be EXACTLY equal to itself
return no = true; // if it isn't, reject.
}
});
} else
if('alias/' === soul.slice(0,6)){ // special case for shared system data, the list of public keys for an alias.
Gun.obj.map(node, function(val, key){ // for each over the node to look at each property/value.
if('_' === key){ return } // ignore meta data
if(!val){ return no = true } // data MUST exist
if(key === Gun.val.rel.is(val)){ return } // and the ID must be EXACTLY equal to its property
return no = true; // that way nobody can tamper with the list of public keys.
});
} else
if('pub/' === soul.slice(0,4)){ // special case, account data for a public key.
tmp = soul.slice(4); // ignore the 'pub/' prefix on the public key.
Gun.obj.map(node, function(val, key){ // for each over the account data, looking at each property/value.
if('_' === key){ return } // ignore meta data.
if('pub' === key){
if(val === tmp){ return } // the account MUST have a `pub` property that equals the ID of the public key.
return no = true; // if not, reject the update.
}
if(at.user){ // if we are logged in
if(tmp === at.user._.pub){ // as this user
SEA.write(val, at.user._.sea).then(function(data){
val = node[key] = data; // then sign our updates as we output them.
});
} // (if we are lying about our signature, other peer's will reject our update)
}
// TODO: this likely isn't working as expected
SEA.read(val, tmp).then(function(data){
if(u === (val = data)){ // make sure the signature matches the account it claims to be on.
return no = true; // reject any updates that are signed with a mismatched account.
}
});
});
} else
if(at.user && (tmp = at.user._.sea)){ // not special case, if we are logged in, then
Gun.obj.map(node, function(val, key){ // any data we output needs to
if('_' === key){ return }
SEA.write(val, tmp).then(function(data){
node[key] = data; // be signed by our logged in account.
});
});
} else // TODO: BUG! These two if-statements are not exclusive to each other!!!
if(tmp = sea.own[soul]){ // not special case, if we receive an update on an ID associated with a public key, then
Gun.obj.map(node, function(val, key){ // for each over the property/values
if('_' === key){ return }
// TODO: this likely isn't working as expected
SEA.read(val, tmp).then(function(data){
if(u === (val = data)){ // and verify they were signed by the associated public key!
return no = true; // reject the update if it fails to match.
}
});
});
} else { // reject any/all other updates by default.
return no = true;
}
});
if(no){ // if we got a rejection then...
if(!at || !Gun.tag.secure){ return }
Gun.on('secure', function(at){ // (below) emit a special event for the developer to handle security.
this.off();
if(!at){ return }
to.next(at); // and if they went ahead and explicitly called "next" (to us) with data, then approve.
});
Gun.on('secure', at);
return; // else wise, reject.
}
//console.log("SEA put", at.put);
// if we did not get a rejection, then pass forward to the "next" adapter middleware.
return to.next(at);
}
to.next(at); // pass forward any data we do not know how to handle or process (this allows custom security protocols).
};
// Does enc/dec key like OpenSSL - works with CryptoJS encryption/decryption
function makeKey(p, s) {
var ps = Buffer.concat([ new Buffer(p, 'utf8'), s ]);
var h128 = new Buffer(nodeCrypto.createHash('md5').update(ps).digest('hex'), 'hex');
// TODO: 'md5' is insecure, do we need OpenSSL compatibility anymore ?
return Buffer.concat([
h128,
new Buffer(nodeCrypto.createHash('md5').update(
Buffer.concat([ h128, ps ]).toString('base64'), 'base64'
).digest('hex'), 'hex')
]);
}
var nHash = pbkdf2.hash.replace('-', '').toLowerCase();
// These SEA functions support both callback AND Promises
var SEA = {};
// create a wrapper library around NodeJS crypto & ecCrypto and Web Crypto API.
// now wrap the various AES, ECDSA, PBKDF2 functions we called above.
SEA.proof = function(pass,salt,cb){
var doProof = (typeof window !== 'undefined' && function(resolve, reject){
crypto.subtle.importKey( // For browser crypto.subtle works fine
'raw', new TextEncoder().encode(pass), {name: 'PBKDF2'}, false, ['deriveBits']
).then(function(key){
return crypto.subtle.deriveBits({
name: 'PBKDF2',
iterations: pbkdf2.iter,
salt: new TextEncoder().encode(salt),
hash: pbkdf2.hash,
}, key, pbkdf2.ks*8);
}).then(function(result){
return new Buffer(result, 'binary').toString('base64');
}).then(resolve).catch(function(e){Gun.log(e); reject(e)});
}) || function(resolve, reject){ // For NodeJS crypto.pkdf2 rocks
nodeCrypto.pbkdf2(pass,new Buffer(salt, 'utf8'),pbkdf2.iter,pbkdf2.ks,nHash,function(err,hash){
resolve(!err && hash && hash.toString('base64'));
});
};
if(cb){doProof(cb, function(){cb()})} else {return new Promise(doProof)}
};
SEA.pair = function(cb){
var doPair = function(resolve, reject){
var priv = nodeCrypto.randomBytes(32);
resolve({
pub: new Buffer(ecCrypto.getPublic(priv), 'binary').toString('hex'),
priv: new Buffer(priv, 'binary').toString('hex')
});
};
if(cb){doPair(cb, function(){cb()})} else {return new Promise(doPair)}
};
SEA.derive = function(m,p,cb){
var doDerive = function(resolve, reject){
ecCrypto.derive(new Buffer(p, 'hex'), new Buffer(m, 'hex'))
.then(function(secret){
resolve(new Buffer(secret, 'binary').toString('hex'));
}).catch(function(e){Gun.log(e); reject(e)});
};
if(cb){doDerive(cb, function(){cb()})} else {return new Promise(doDerive)}
};
SEA.sign = function(m, p, cb){
var doSign = function(resolve, reject){
ecCrypto.sign(
new Buffer(p, 'hex'),
nodeCrypto.createHash(nHash).update(JSON.stringify(m), 'utf8').digest()
).then(function(sig){
resolve(new Buffer(sig, 'binary').toString('hex'));
}).catch(function(e){Gun.log(e); reject(e)});
};
if(cb){doSign(cb, function(){cb()})} else {return new Promise(doSign)}
};
SEA.verify = function(m, p, s, cb){
var doVerify = function(resolve, reject){
ecCrypto.verify(
new Buffer(p, 'hex'),
nodeCrypto.createHash(nHash).update(JSON.stringify(m), 'utf8').digest(),
new Buffer(s, 'hex')
).then(function(){resolve(true)}).catch(function(e){Gun.log(e);reject(e)})
};
if(cb){doVerify(cb, function(){cb()})} else {return new Promise(doVerify)}
};
SEA.en = function(m,p,cb){
var doEncrypt = function(resolve, reject){
var s = nodeCrypto.randomBytes(8);
var iv = nodeCrypto.randomBytes(16);
var r = {iv: iv.toString('hex'), s: s.toString('hex')};
var key = makeKey(p, s);
if (typeof window !== 'undefined'){ // Browser doesn't run createCipheriv
crypto.subtle.importKey('raw', key, 'AES-CBC', false, ['encrypt'])
.then(function(aesKey){
crypto.subtle.encrypt({
name: 'AES-CBC', iv: iv
}, aesKey, new TextEncoder().encode(JSON.stringify(m))).then(function(ct){
r.ct = new Buffer(ct, 'binary').toString('base64');
return JSON.stringify(r);
}).then(resolve).catch(function(e){Gun.log(e); reject(e)});
}).catch(function(e){Gun.log(e); reject(e)});
} else { // NodeJS doesn't support crypto.subtle.importKey properly
try{
var cipher = nodeCrypto.createCipheriv(aes.enc, key, iv);
r.ct = cipher.update(m, 'utf8', 'base64');
r.ct += cipher.final('base64');
}catch(e){Gun.log(e); return reject(e)}
resolve(JSON.stringify(r));
}
};
if(cb){doEncrypt(cb, function(){cb()})} else {return new Promise(doEncrypt)}
};
SEA.de = function(m,p,cb){
var doDecrypt = function(resolve, reject){
var d = JSON.parse(m);
var key = makeKey(p, new Buffer(d.s, 'hex'));
var iv = new Buffer(d.iv, 'hex');
if (typeof window !== 'undefined'){ // Browser doesn't run createDecipheriv
crypto.subtle.importKey('raw', key, 'AES-CBC', false, ['decrypt'])
.then(function(aesKey){
crypto.subtle.decrypt({
name: 'AES-CBC', iv: iv
}, aesKey, new Buffer(d.ct, 'base64')).then(function(ct){
var ctUtf8 = new TextDecoder('utf8').decode(ct);
var ret = JSON.parse(ctUtf8);
return ret;
}).then(resolve).catch(function(e){Gun.log(e); reject(e)});
}).catch(function(e){Gun.log(e); reject(e)});
} else { // NodeJS doesn't support crypto.subtle.importKey properly
try{
var decipher = nodeCrypto.createDecipheriv(aes.enc, key, iv);
r = decipher.update(d.ct, 'base64', 'utf8') + decipher.final('utf8');
}catch(e){Gun.log(e); return reject(e)}
resolve(r);
}
};
if(cb){doDecrypt(cb, function(){cb()})} else {return new Promise(doDecrypt)}
};
SEA.write = function(m,p,cb){
var doSign = function(resolve, reject) {
SEA.sign(m, p).then(function(signature){
resolve('SEA'+JSON.stringify([m,signature]));
}).catch(function(e){Gun.log(e); reject(e)});
};
if(cb){doSign(cb, function(){cb()})} else {return new Promise(doSign)}
// TODO: what's this ?
// return JSON.stringify([m,SEA.sign(m,p)]);
};
SEA.read = function(m,p,cb){
var doRead = function(resolve, reject) {
if(!m){ return resolve(); }
if(!m.slice || 'SEA[' !== m.slice(0,4)){ return resolve(m); }
m = m.slice(3);
try{m = JSON.parse(m);
}catch(e){ return reject(e); }
m = m || '';
SEA.verify(m[0], p, m[1]).then(function(ok){
resolve(ok && m[0]);
});
};
if(cb){doRead(cb, function(){cb()})} else {return new Promise(doRead)}
};
Gun.SEA = SEA;
// all done!
// Obviously it is missing MANY necessary features. This is only an alpha release.
// Please experiment with it, audit what I've done so far, and complain about what needs to be added.
// SEA should be a full suite that is easy and seamless to use.
// Again, scroll naer the top, where I provide an EXAMPLE of how to create a user and sign in.
// Once logged in, the rest of the code you just read handled automatically signing/validating data.
// But all other behavior needs to be equally easy, like opinionated ways of
// Adding friends (trusted public keys), sending private messages, etc.
// Cheers! Tell me what you think.
module.exports = SEA;
}());