[NOD-882] Remove ecc and hdkeychain (#680)

* [NOD-882] Remove ecc and hdkeychain

* [NOD-882] Remove HDCoinType from dagParams
This commit is contained in:
Ori Newman 2020-03-31 10:58:11 +03:00 committed by GitHub
parent 1a38550fdd
commit 6aa5e0b5a8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
28 changed files with 0 additions and 8351 deletions

View File

@ -13,7 +13,6 @@ import (
"github.com/pkg/errors"
"github.com/kaspanet/kaspad/util"
"github.com/kaspanet/kaspad/util/hdkeychain"
"github.com/kaspanet/kaspad/util/daghash"
"github.com/kaspanet/kaspad/wire"
@ -177,13 +176,6 @@ type Params struct {
// Address encoding magics
PrivateKeyID byte // First byte of a WIF private key
// BIP32 hierarchical deterministic extended key magics
HDKeyIDPair hdkeychain.HDKeyIDPair
// BIP44 coin type used in the hierarchical deterministic path for
// address generation.
HDCoinType uint32
}
// NormalizeRPCServerAddress returns addr with the current network default
@ -238,13 +230,6 @@ var MainnetParams = Params{
// Address encoding magics
PrivateKeyID: 0x80, // starts with 5 (uncompressed) or K (compressed)
// BIP32 hierarchical deterministic extended key magics
HDKeyIDPair: hdkeychain.HDKeyPairMainnet,
// BIP44 coin type used in the hierarchical deterministic path for
// address generation.
HDCoinType: 0,
}
// RegressionNetParams defines the network parameters for the regression test
@ -295,13 +280,6 @@ var RegressionNetParams = Params{
// Address encoding magics
PrivateKeyID: 0xef, // starts with 9 (uncompressed) or c (compressed)
// BIP32 hierarchical deterministic extended key magics
HDKeyIDPair: hdkeychain.HDKeyPairRegressionNet,
// BIP44 coin type used in the hierarchical deterministic path for
// address generation.
HDCoinType: 1,
}
// TestnetParams defines the network parameters for the test Kaspa network.
@ -350,13 +328,6 @@ var TestnetParams = Params{
// Address encoding magics
PrivateKeyID: 0xef, // starts with 9 (uncompressed) or c (compressed)
// BIP32 hierarchical deterministic extended key magics
HDKeyIDPair: hdkeychain.HDKeyPairTestnet,
// BIP44 coin type used in the hierarchical deterministic path for
// address generation.
HDCoinType: 1,
}
// SimnetParams defines the network parameters for the simulation test Kaspa
@ -409,13 +380,6 @@ var SimnetParams = Params{
PrivateKeyID: 0x64, // starts with 4 (uncompressed) or F (compressed)
// Human-readable part for Bech32 encoded addresses
Prefix: util.Bech32PrefixKaspaSim,
// BIP32 hierarchical deterministic extended key magics
HDKeyIDPair: hdkeychain.HDKeyPairSimnet,
// BIP44 coin type used in the hierarchical deterministic path for
// address generation.
HDCoinType: 115, // ASCII for s
}
// DevnetParams defines the network parameters for the development Kaspa network.
@ -464,13 +428,6 @@ var DevnetParams = Params{
// Address encoding magics
PrivateKeyID: 0xef, // starts with 9 (uncompressed) or c (compressed)
// BIP32 hierarchical deterministic extended key magics
HDKeyIDPair: hdkeychain.HDKeyPairDevnet,
// BIP44 coin type used in the hierarchical deterministic path for
// address generation.
HDCoinType: 1,
}
var (

View File

@ -1,9 +1,6 @@
package dagconfig_test
import (
"bytes"
"github.com/kaspanet/kaspad/util/hdkeychain"
"reflect"
"testing"
. "github.com/kaspanet/kaspad/dagconfig"
@ -15,10 +12,6 @@ import (
var mockNetParams = Params{
Name: "mocknet",
Net: 1<<32 - 1,
HDKeyIDPair: hdkeychain.HDKeyIDPair{
PrivateKeyID: [4]byte{0x01, 0x02, 0x03, 0x04},
PublicKeyID: [4]byte{0x05, 0x06, 0x07, 0x08},
},
}
func TestRegister(t *testing.T) {
@ -27,16 +20,10 @@ func TestRegister(t *testing.T) {
params *Params
err error
}
type hdTest struct {
priv []byte
want []byte
err error
}
tests := []struct {
name string
register []registerTest
hdMagics []hdTest
}{
{
name: "default networks",
@ -62,40 +49,6 @@ func TestRegister(t *testing.T) {
err: ErrDuplicateNet,
},
},
hdMagics: []hdTest{
{
priv: MainnetParams.HDKeyIDPair.PrivateKeyID[:],
want: MainnetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: TestnetParams.HDKeyIDPair.PrivateKeyID[:],
want: TestnetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: RegressionNetParams.HDKeyIDPair.PrivateKeyID[:],
want: RegressionNetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: SimnetParams.HDKeyIDPair.PrivateKeyID[:],
want: SimnetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: mockNetParams.HDKeyIDPair.PrivateKeyID[:],
err: hdkeychain.ErrUnknownHDKeyID,
},
{
priv: []byte{0xff, 0xff, 0xff, 0xff},
err: hdkeychain.ErrUnknownHDKeyID,
},
{
priv: []byte{0xff},
err: hdkeychain.ErrUnknownHDKeyID,
},
},
},
{
name: "register mocknet",
@ -106,13 +59,6 @@ func TestRegister(t *testing.T) {
err: nil,
},
},
hdMagics: []hdTest{
{
priv: mockNetParams.HDKeyIDPair.PrivateKeyID[:],
want: mockNetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
},
},
{
name: "more duplicates",
@ -143,41 +89,6 @@ func TestRegister(t *testing.T) {
err: ErrDuplicateNet,
},
},
hdMagics: []hdTest{
{
priv: MainnetParams.HDKeyIDPair.PrivateKeyID[:],
want: MainnetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: TestnetParams.HDKeyIDPair.PrivateKeyID[:],
want: TestnetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: RegressionNetParams.HDKeyIDPair.PrivateKeyID[:],
want: RegressionNetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: SimnetParams.HDKeyIDPair.PrivateKeyID[:],
want: SimnetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: mockNetParams.HDKeyIDPair.PrivateKeyID[:],
want: mockNetParams.HDKeyIDPair.PublicKeyID[:],
err: nil,
},
{
priv: []byte{0xff, 0xff, 0xff, 0xff},
err: hdkeychain.ErrUnknownHDKeyID,
},
{
priv: []byte{0xff},
err: hdkeychain.ErrUnknownHDKeyID,
},
},
},
}
@ -185,25 +96,10 @@ func TestRegister(t *testing.T) {
for _, regtest := range test.register {
err := Register(regtest.params)
// HDKeyIDPairs must be registered separately
hdkeychain.RegisterHDKeyIDPair(regtest.params.HDKeyIDPair)
if err != regtest.err {
t.Errorf("%s:%s: Registered network with unexpected error: got %v expected %v",
test.name, regtest.name, err, regtest.err)
}
}
for i, magTest := range test.hdMagics {
pubKey, err := hdkeychain.HDPrivateKeyToPublicKeyID(magTest.priv[:])
if !reflect.DeepEqual(err, magTest.err) {
t.Errorf("%s: HD magic %d mismatched error: got %v expected %v ",
test.name, i, err, magTest.err)
continue
}
if magTest.err == nil && !bytes.Equal(pubKey, magTest.want[:]) {
t.Errorf("%s: HD magic %d private and public mismatch: got %v expected %v ",
test.name, i, pubKey, magTest.want[:])
}
}
}
}

View File

@ -1,24 +0,0 @@
ecc
=====
[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](https://choosealicense.com/licenses/isc/)
[![GoDoc](https://godoc.org/github.com/kaspanet/kaspad/ecc?status.png)](http://godoc.org/github.com/kaspanet/kaspad/ecc)
Package ecc implements elliptic curve cryptography needed for working with
Kaspa. It is designed so that it may be used with the standard crypto/ecdsa
packages provided with go. A comprehensive suite of tests is provided to ensure
proper functionality. Package ecc was originally based on work from ThePiachu
which is licensed under the same terms as Go, but it has signficantly diverged
since then. The kaspanet developers original is licensed under the liberal ISC
license.
## Examples
* [Sign Message](http://godoc.org/github.com/kaspanet/kaspad/ecc#example-package--SignMessage)
Demonstrates signing a message with a secp256k1 private key that is first
parsed form raw bytes and serializing the generated signature.
* [Verify Signature](http://godoc.org/github.com/kaspanet/kaspad/ecc#example-package--VerifySignature)
Demonstrates verifying a secp256k1 signature against a public key that is
first parsed from raw bytes. The signature is also parsed from raw bytes.

View File

@ -1,123 +0,0 @@
// Copyright 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import "testing"
// BenchmarkAddJacobian benchmarks the secp256k1 curve addJacobian function with
// Z values of 1 so that the associated optimizations are used.
func BenchmarkAddJacobian(b *testing.B) {
b.StopTimer()
x1 := new(fieldVal).SetHex("34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6")
y1 := new(fieldVal).SetHex("0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232")
z1 := new(fieldVal).SetHex("1")
x2 := new(fieldVal).SetHex("34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6")
y2 := new(fieldVal).SetHex("0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232")
z2 := new(fieldVal).SetHex("1")
x3, y3, z3 := new(fieldVal), new(fieldVal), new(fieldVal)
curve := S256()
b.StartTimer()
for i := 0; i < b.N; i++ {
curve.addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3)
}
}
// BenchmarkAddJacobianNotZOne benchmarks the secp256k1 curve addJacobian
// function with Z values other than one so the optimizations associated with
// Z=1 aren't used.
func BenchmarkAddJacobianNotZOne(b *testing.B) {
b.StopTimer()
x1 := new(fieldVal).SetHex("d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718")
y1 := new(fieldVal).SetHex("5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190")
z1 := new(fieldVal).SetHex("2")
x2 := new(fieldVal).SetHex("91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4")
y2 := new(fieldVal).SetHex("03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1")
z2 := new(fieldVal).SetHex("3")
x3, y3, z3 := new(fieldVal), new(fieldVal), new(fieldVal)
curve := S256()
b.StartTimer()
for i := 0; i < b.N; i++ {
curve.addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3)
}
}
// BenchmarkScalarBaseMult benchmarks the secp256k1 curve ScalarBaseMult
// function.
func BenchmarkScalarBaseMult(b *testing.B) {
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575")
curve := S256()
for i := 0; i < b.N; i++ {
curve.ScalarBaseMult(k.Bytes())
}
}
// BenchmarkScalarBaseMultLarge benchmarks the secp256k1 curve ScalarBaseMult
// function with abnormally large k values.
func BenchmarkScalarBaseMultLarge(b *testing.B) {
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c005751111111011111110")
curve := S256()
for i := 0; i < b.N; i++ {
curve.ScalarBaseMult(k.Bytes())
}
}
// BenchmarkScalarMult benchmarks the secp256k1 curve ScalarMult function.
func BenchmarkScalarMult(b *testing.B) {
x := fromHex("34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6")
y := fromHex("0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232")
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575")
curve := S256()
for i := 0; i < b.N; i++ {
curve.ScalarMult(x, y, k.Bytes())
}
}
// BenchmarkNAF benchmarks the NAF function.
func BenchmarkNAF(b *testing.B) {
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575")
for i := 0; i < b.N; i++ {
NAF(k.Bytes())
}
}
// BenchmarkSigVerify benchmarks how long it takes the secp256k1 curve to
// verify signatures.
func BenchmarkSigVerify(b *testing.B) {
b.StopTimer()
// Randomly generated keypair.
// Private key: 9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d
pubKey := PublicKey{
Curve: S256(),
X: fromHex("d2e670a19c6d753d1a6d8b20bd045df8a08fb162cf508956c31268c6d81ffdab"),
Y: fromHex("ab65528eefbb8057aa85d597258a3fbd481a24633bc9b47a9aa045c91371de52"),
}
// Double sha256 of []byte{0x01, 0x02, 0x03, 0x04}
msgHash := fromHex("8de472e2399610baaa7f84840547cd409434e31f5d3bd71e4d947f283874f9c0")
sig := Signature{
R: fromHex("fef45d2892953aa5bbcdb057b5e98b208f1617a7498af7eb765574e29b5d9c2c"),
S: fromHex("d47563f52aac6b04b55de236b7c515eb9311757db01e02cff079c3ca6efb063f"),
}
if !sig.Verify(msgHash.Bytes(), &pubKey) {
b.Errorf("Signature failed to verify")
return
}
b.StartTimer()
for i := 0; i < b.N; i++ {
sig.Verify(msgHash.Bytes(), &pubKey)
}
}
// BenchmarkFieldNormalize benchmarks how long it takes the internal field
// to perform normalization (which includes modular reduction).
func BenchmarkFieldNormalize(b *testing.B) {
// The normalize function is constant time so default value is fine.
f := new(fieldVal)
for i := 0; i < b.N; i++ {
f.Normalize()
}
}

View File

@ -1,16 +0,0 @@
/*
Package ecc implements support for the elliptic curves needed for kaspa.
Kaspa uses elliptic curve cryptography using koblitz curves
(specifically secp256k1) for cryptographic functions. See
http://www.secg.org/collateral/sec2_final.pdf for details on the
standard.
This package provides the data structures and functions implementing the
crypto/elliptic Curve interface in order to permit using these curves
with the standard crypto/ecdsa package provided with go. Helper
functionality is provided to parse signatures and public keys from
standard formats. It was originally based on some initial work by
ThePiachu, but has significantly diverged since then.
*/
package ecc

1083
ecc/ecc.go

File diff suppressed because it is too large Load Diff

View File

@ -1,887 +0,0 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"crypto/rand"
"fmt"
"math/big"
"testing"
)
// isJacobianOnS256Curve returns boolean if the point (x,y,z) is on the
// secp256k1 curve.
func isJacobianOnS256Curve(x, y, z *fieldVal) bool {
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
// In Jacobian coordinates, Y = y/z^3 and X = x/z^2
// Thus:
// (y/z^3)^2 = (x/z^2)^3 + 7
// y^2/z^6 = x^3/z^6 + 7
// y^2 = x^3 + 7*z^6
var y2, z2, x3, result fieldVal
y2.SquareVal(y).Normalize()
z2.SquareVal(z)
x3.SquareVal(x).Mul(x)
result.SquareVal(&z2).Mul(&z2).MulInt(7).Add(&x3).Normalize()
return y2.Equals(&result)
}
// TestAddJacobian tests addition of points projected in Jacobian coordinates.
func TestAddJacobian(t *testing.T) {
tests := []struct {
x1, y1, z1 string // Coordinates (in hex) of first point to add
x2, y2, z2 string // Coordinates (in hex) of second point to add
x3, y3, z3 string // Coordinates (in hex) of expected point
}{
// Addition with a point at infinity (left hand side).
// ∞ + P = P
{
"0",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
},
// Addition with a point at infinity (right hand side).
// P + ∞ = P
{
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"0",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
},
// Addition with z1=z2=1 different x values.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"0cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a6",
"e205f79361bbe0346b037b4010985dbf4f9e1e955e7d0d14aca876bfa79aad87",
"44a5646b446e3877a648d6d381370d9ef55a83b666ebce9df1b1d7d65b817b2f",
},
// Addition with z1=z2=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"1",
"0",
"0",
"0",
},
// Addition with z1=z2=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
},
// Addition with z1=z2 (!=1) different x values.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"5d2fe112c21891d440f65a98473cb626111f8a234d2cd82f22172e369f002147",
"98e3386a0a622a35c4561ffb32308d8e1c6758e10ebb1b4ebd3d04b4eb0ecbe8",
"2",
"cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a60",
"817de4d86ef80d1ac0ded00426176fd3e787a5579f43452b2a1db021e6ac3778",
"129591ad11b8e1de99235b4e04dc367bd56a0ed99baf3a77c6c75f5a6e05f08d",
},
// Addition with z1=z2 (!=1) same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"a470ab21467813b6e0496d2c2b70c11446bab4fcbc9a52b7f225f30e869aea9f",
"2",
"0",
"0",
"0",
},
// Addition with z1=z2 (!=1) same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
// Addition with z1!=z2 and z2=1 different x values.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"3ef1f68795a6ccd1181e23eab80a1b9a2cebdcde755413bf097936eb5b91b4f3",
"0bef26c377c068d606f6802130bb7e9f3c3d2abcfa1a295950ed81133561cb04",
"252b235a2371c3bd3246b69c09b86cf7aad41db3375e74ef8d8ebeb4dc0be11a",
},
// Addition with z1!=z2 and z2=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"1",
"0",
"0",
"0",
},
// Addition with z1!=z2 and z2=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
// Addition with z1!=z2 and z2!=1 different x values.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4",
"03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1",
"3",
"3f07081927fd3f6dadd4476614c89a09eba7f57c1c6c3b01fa2d64eac1eef31e",
"949166e04ebc7fd95a9d77e5dfd88d1492ecffd189792e3944eb2b765e09e031",
"eb8cba81bcffa4f44d75427506737e1f045f21e6d6f65543ee0e1d163540c931",
}, // Addition with z1!=z2 and z2!=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
"cafc41904dd5428934f7d075129c8ba46eb622d4fc88d72cd1401452664add18",
"3",
"0",
"0",
"0",
},
// Addition with z1!=z2 and z2!=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
"3503be6fb22abd76cb082f8aed63745b9149dd2b037728d32ebfebac99b51f17",
"3",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1 := new(fieldVal).SetHex(test.x1)
y1 := new(fieldVal).SetHex(test.y1)
z1 := new(fieldVal).SetHex(test.z1)
x2 := new(fieldVal).SetHex(test.x2)
y2 := new(fieldVal).SetHex(test.y2)
z2 := new(fieldVal).SetHex(test.z2)
x3 := new(fieldVal).SetHex(test.x3)
y3 := new(fieldVal).SetHex(test.y3)
z3 := new(fieldVal).SetHex(test.z3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !z2.IsZero() && !isJacobianOnS256Curve(x2, y2, z2) {
t.Errorf("#%d second point is not on the curve -- "+
"invalid test data", i)
continue
}
if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Add the two points.
rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
S256().addJacobian(x1, y1, z1, x2, y2, z2, rx, ry, rz)
// Ensure result matches expected.
if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
continue
}
}
}
// TestAddAffine tests addition of points in affine coordinates.
func TestAddAffine(t *testing.T) {
tests := []struct {
x1, y1 string // Coordinates (in hex) of first point to add
x2, y2 string // Coordinates (in hex) of second point to add
x3, y3 string // Coordinates (in hex) of expected point
}{
// Addition with a point at infinity (left hand side).
// ∞ + P = P
{
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
},
// Addition with a point at infinity (right hand side).
// P + ∞ = P
{
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
},
// Addition with different x values.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"fd5b88c21d3143518d522cd2796f3d726793c88b3e05636bc829448e053fed69",
"21cf4f6a5be5ff6380234c50424a970b1f7e718f5eb58f68198c108d642a137f",
},
// Addition with same x opposite y.
// P(x, y) + P(x, -y) = infinity
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"0",
"0",
},
// Addition with same point.
// P(x, y) + P(x, y) = 2P
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"59477d88ae64a104dbb8d31ec4ce2d91b2fe50fa628fb6a064e22582196b365b",
"938dc8c0f13d1e75c987cb1a220501bd614b0d3dd9eb5c639847e1240216e3b6",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1, y1 := fromHex(test.x1), fromHex(test.y1)
x2, y2 := fromHex(test.x2), fromHex(test.y2)
x3, y3 := fromHex(test.x3), fromHex(test.y3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x2.Sign() == 0 && y2.Sign() == 0) && !S256().IsOnCurve(x2, y2) {
t.Errorf("#%d second point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Add the two points.
rx, ry := S256().Add(x1, y1, x2, y2)
// Ensure result matches expected.
if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
"want: (%x, %x)", i, rx, ry, x3, y3)
continue
}
}
}
// TestDoubleJacobian tests doubling of points projected in Jacobian
// coordinates.
func TestDoubleJacobian(t *testing.T) {
tests := []struct {
x1, y1, z1 string // Coordinates (in hex) of point to double
x3, y3, z3 string // Coordinates (in hex) of expected point
}{
// Doubling a point at infinity is still infinity.
{
"0",
"0",
"0",
"0",
"0",
"0",
},
// Doubling with z1=1.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
},
// Doubling with z1!=1.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
{
"201e3f75715136d2f93c4f4598f91826f94ca01f4233a5bd35de9708859ca50d",
"bdf18566445e7562c6ada68aef02d498d7301503de5b18c6aef6e2b1722412e1",
"0000000000000000000000000000000000000000000000000000000000000001",
"4a5e0559863ebb4e9ed85f5c4fa76003d05d9a7626616e614a1f738621e3c220",
"00000000000000000000000000000000000000000000000000000001b1388778",
"7be30acc88bceac58d5b4d15de05a931ae602a07bcb6318d5dedc563e4482993",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1 := new(fieldVal).SetHex(test.x1)
y1 := new(fieldVal).SetHex(test.y1)
z1 := new(fieldVal).SetHex(test.z1)
x3 := new(fieldVal).SetHex(test.x3)
y3 := new(fieldVal).SetHex(test.y3)
z3 := new(fieldVal).SetHex(test.z3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Double the point.
rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
S256().doubleJacobian(x1, y1, z1, rx, ry, rz)
// Ensure result matches expected.
if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
continue
}
}
}
// TestDoubleAffine tests doubling of points in affine coordinates.
func TestDoubleAffine(t *testing.T) {
tests := []struct {
x1, y1 string // Coordinates (in hex) of point to double
x3, y3 string // Coordinates (in hex) of expected point
}{
// Doubling a point at infinity is still infinity.
// 2*∞ = ∞ (point at infinity)
{
"0",
"0",
"0",
"0",
},
// Random points.
{
"e41387ffd8baaeeb43c2faa44e141b19790e8ac1f7ff43d480dc132230536f86",
"1b88191d430f559896149c86cbcb703193105e3cf3213c0c3556399836a2b899",
"88da47a089d333371bd798c548ef7caae76e737c1980b452d367b3cfe3082c19",
"3b6f659b09a362821dfcfefdbfbc2e59b935ba081b6c249eb147b3c2100b1bc1",
},
{
"b3589b5d984f03ef7c80aeae444f919374799edf18d375cab10489a3009cff0c",
"c26cf343875b3630e15bccc61202815b5d8f1fd11308934a584a5babe69db36a",
"e193860172998751e527bb12563855602a227fc1f612523394da53b746bb2fb1",
"2bfcf13d2f5ab8bb5c611fab5ebbed3dc2f057062b39a335224c22f090c04789",
},
{
"2b31a40fbebe3440d43ac28dba23eee71c62762c3fe3dbd88b4ab82dc6a82340",
"9ba7deb02f5c010e217607fd49d58db78ec273371ea828b49891ce2fd74959a1",
"2c8d5ef0d343b1a1a48aa336078eadda8481cb048d9305dc4fdf7ee5f65973a2",
"bb4914ac729e26d3cd8f8dc8f702f3f4bb7e0e9c5ae43335f6e94c2de6c3dc95",
},
{
"61c64b760b51981fab54716d5078ab7dffc93730b1d1823477e27c51f6904c7a",
"ef6eb16ea1a36af69d7f66524c75a3a5e84c13be8fbc2e811e0563c5405e49bd",
"5f0dcdd2595f5ad83318a0f9da481039e36f135005420393e72dfca985b482f4",
"a01c849b0837065c1cb481b0932c441f49d1cab1b4b9f355c35173d93f110ae0",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1, y1 := fromHex(test.x1), fromHex(test.y1)
x3, y3 := fromHex(test.x3), fromHex(test.y3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Double the point.
rx, ry := S256().Double(x1, y1)
// Ensure result matches expected.
if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
"want: (%x, %x)", i, rx, ry, x3, y3)
continue
}
}
}
func TestOnCurve(t *testing.T) {
s256 := S256()
if !s256.IsOnCurve(s256.Params().Gx, s256.Params().Gy) {
t.Errorf("FAIL S256")
}
}
type baseMultTest struct {
k string
x, y string
}
//TODO: add more test vectors
var s256BaseMultTests = []baseMultTest{
{
"AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522",
"34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6",
"B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232",
},
{
"7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3",
"D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575",
"131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D",
},
{
"6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D",
"E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F",
"C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1",
},
{
"376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC",
"14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1",
"297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982",
},
{
"1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9",
"F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3",
"F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE",
},
}
//TODO: test different curves as well?
func TestBaseMult(t *testing.T) {
s256 := S256()
for i, e := range s256BaseMultTests {
k, ok := new(big.Int).SetString(e.k, 16)
if !ok {
t.Errorf("%d: bad value for k: %s", i, e.k)
}
x, y := s256.ScalarBaseMult(k.Bytes())
if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y {
t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y)
}
if testing.Short() && i > 5 {
break
}
}
}
func TestBaseMultVerify(t *testing.T) {
s256 := S256()
for bytes := 1; bytes < 40; bytes++ {
for i := 0; i < 30; i++ {
data := make([]byte, bytes)
_, err := rand.Read(data)
if err != nil {
t.Errorf("failed to read random data for %d", i)
continue
}
x, y := s256.ScalarBaseMult(data)
xWant, yWant := s256.ScalarMult(s256.Gx, s256.Gy, data)
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
t.Errorf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
}
if testing.Short() && i > 2 {
break
}
}
}
}
func TestScalarMult(t *testing.T) {
tests := []struct {
x string
y string
k string
rx string
ry string
}{
// base mult, essentially.
{
"79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798",
"483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8",
"18e14a7b6a307f426a94f8114701e7c8e774e7f9a47e2c2035db29a206321725",
"50863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352",
"2cd470243453a299fa9e77237716103abc11a1df38855ed6f2ee187e9c582ba6",
},
{
"000000000000000000000000000000000000000000000000000000000000002c",
"420e7a99bba18a9d3952597510fd2b6728cfeafc21a4e73951091d4d8ddbe94e",
"a2e8ba2e8ba2e8ba2e8ba2e8ba2e8ba219b51835b55cc30ebfe2f6599bc56f58",
"a2112dcdfbcd10ae1133a358de7b82db68e0a3eb4b492cc8268d1e7118c98788",
"27fc7463b7bb3c5f98ecf2c84a6272bb1681ed553d92c69f2dfe25a9f9fd3836",
},
}
s256 := S256()
for i, test := range tests {
x, _ := new(big.Int).SetString(test.x, 16)
y, _ := new(big.Int).SetString(test.y, 16)
k, _ := new(big.Int).SetString(test.k, 16)
xWant, _ := new(big.Int).SetString(test.rx, 16)
yWant, _ := new(big.Int).SetString(test.ry, 16)
xGot, yGot := s256.ScalarMult(x, y, k.Bytes())
if xGot.Cmp(xWant) != 0 || yGot.Cmp(yWant) != 0 {
t.Fatalf("%d: bad output: got (%X, %X), want (%X, %X)", i, xGot, yGot, xWant, yWant)
}
}
}
func TestScalarMultRand(t *testing.T) {
// Strategy for this test:
// Get a random exponent from the generator point at first
// This creates a new point which is used in the next iteration
// Use another random exponent on the new point.
// We use BaseMult to verify by multiplying the previous exponent
// and the new random exponent together (mod N)
s256 := S256()
x, y := s256.Gx, s256.Gy
exponent := big.NewInt(1)
for i := 0; i < 1024; i++ {
data := make([]byte, 32)
_, err := rand.Read(data)
if err != nil {
t.Fatalf("failed to read random data at %d", i)
break
}
x, y = s256.ScalarMult(x, y, data)
exponent.Mul(exponent, new(big.Int).SetBytes(data))
xWant, yWant := s256.ScalarBaseMult(exponent.Bytes())
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
break
}
}
}
func TestSplitK(t *testing.T) {
tests := []struct {
k string
k1, k2 string
s1, s2 int
}{
{
"6df2b5d30854069ccdec40ae022f5c948936324a4e9ebed8eb82cfd5a6b6d766",
"00000000000000000000000000000000b776e53fb55f6b006a270d42d64ec2b1",
"00000000000000000000000000000000d6cc32c857f1174b604eefc544f0c7f7",
-1, -1,
},
{
"6ca00a8f10632170accc1b3baf2a118fa5725f41473f8959f34b8f860c47d88d",
"0000000000000000000000000000000007b21976c1795723c1bfbfa511e95b84",
"00000000000000000000000000000000d8d2d5f9d20fc64fd2cf9bda09a5bf90",
1, -1,
},
{
"b2eda8ab31b259032d39cbc2a234af17fcee89c863a8917b2740b67568166289",
"00000000000000000000000000000000507d930fecda7414fc4a523b95ef3c8c",
"00000000000000000000000000000000f65ffb179df189675338c6185cb839be",
-1, -1,
},
{
"f6f00e44f179936f2befc7442721b0633f6bafdf7161c167ffc6f7751980e3a0",
"0000000000000000000000000000000008d0264f10bcdcd97da3faa38f85308d",
"0000000000000000000000000000000065fed1506eb6605a899a54e155665f79",
-1, -1,
},
{
"8679085ab081dc92cdd23091ce3ee998f6b320e419c3475fae6b5b7d3081996e",
"0000000000000000000000000000000089fbf24fbaa5c3c137b4f1cedc51d975",
"00000000000000000000000000000000d38aa615bd6754d6f4d51ccdaf529fea",
-1, -1,
},
{
"6b1247bb7931dfcae5b5603c8b5ae22ce94d670138c51872225beae6bba8cdb3",
"000000000000000000000000000000008acc2a521b21b17cfb002c83be62f55d",
"0000000000000000000000000000000035f0eff4d7430950ecb2d94193dedc79",
-1, -1,
},
{
"a2e8ba2e8ba2e8ba2e8ba2e8ba2e8ba219b51835b55cc30ebfe2f6599bc56f58",
"0000000000000000000000000000000045c53aa1bb56fcd68c011e2dad6758e4",
"00000000000000000000000000000000a2e79d200f27f2360fba57619936159b",
-1, -1,
},
}
s256 := S256()
for i, test := range tests {
k, ok := new(big.Int).SetString(test.k, 16)
if !ok {
t.Errorf("%d: bad value for k: %s", i, test.k)
}
k1, k2, k1Sign, k2Sign := s256.splitK(k.Bytes())
k1str := fmt.Sprintf("%064x", k1)
if test.k1 != k1str {
t.Errorf("%d: bad k1: got %v, want %v", i, k1str, test.k1)
}
k2str := fmt.Sprintf("%064x", k2)
if test.k2 != k2str {
t.Errorf("%d: bad k2: got %v, want %v", i, k2str, test.k2)
}
if test.s1 != k1Sign {
t.Errorf("%d: bad k1 sign: got %d, want %d", i, k1Sign, test.s1)
}
if test.s2 != k2Sign {
t.Errorf("%d: bad k2 sign: got %d, want %d", i, k2Sign, test.s2)
}
k1Int := new(big.Int).SetBytes(k1)
k1SignInt := new(big.Int).SetInt64(int64(k1Sign))
k1Int.Mul(k1Int, k1SignInt)
k2Int := new(big.Int).SetBytes(k2)
k2SignInt := new(big.Int).SetInt64(int64(k2Sign))
k2Int.Mul(k2Int, k2SignInt)
gotK := new(big.Int).Mul(k2Int, s256.lambda)
gotK.Add(k1Int, gotK)
gotK.Mod(gotK, s256.N)
if k.Cmp(gotK) != 0 {
t.Errorf("%d: bad k: got %X, want %X", i, gotK.Bytes(), k.Bytes())
}
}
}
func TestSplitKRand(t *testing.T) {
s256 := S256()
for i := 0; i < 1024; i++ {
bytesK := make([]byte, 32)
_, err := rand.Read(bytesK)
if err != nil {
t.Fatalf("failed to read random data at %d", i)
break
}
k := new(big.Int).SetBytes(bytesK)
k1, k2, k1Sign, k2Sign := s256.splitK(bytesK)
k1Int := new(big.Int).SetBytes(k1)
k1SignInt := new(big.Int).SetInt64(int64(k1Sign))
k1Int.Mul(k1Int, k1SignInt)
k2Int := new(big.Int).SetBytes(k2)
k2SignInt := new(big.Int).SetInt64(int64(k2Sign))
k2Int.Mul(k2Int, k2SignInt)
gotK := new(big.Int).Mul(k2Int, s256.lambda)
gotK.Add(k1Int, gotK)
gotK.Mod(gotK, s256.N)
if k.Cmp(gotK) != 0 {
t.Errorf("%d: bad k: got %X, want %X", i, gotK.Bytes(), k.Bytes())
}
}
}
// Test this curve's usage with the ecdsa package.
func testKeyGeneration(t *testing.T, c *KoblitzCurve, tag string) {
priv, err := NewPrivateKey(c)
if err != nil {
t.Errorf("%s: error: %s", tag, err)
return
}
if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
t.Errorf("%s: public key invalid: %s", tag, err)
}
}
func TestKeyGeneration(t *testing.T) {
testKeyGeneration(t, S256(), "S256")
}
func testSignAndVerify(t *testing.T, c *KoblitzCurve, tag string) {
priv, _ := NewPrivateKey(c)
pub := priv.PubKey()
hashed := []byte("testing")
sig, err := priv.Sign(hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
if !sig.Verify(hashed, pub) {
t.Errorf("%s: Verify failed", tag)
}
hashed[0] ^= 0xff
if sig.Verify(hashed, pub) {
t.Errorf("%s: Verify always works!", tag)
}
}
func TestSignAndVerify(t *testing.T) {
testSignAndVerify(t, S256(), "S256")
}
func TestNAF(t *testing.T) {
tests := []string{
"6df2b5d30854069ccdec40ae022f5c948936324a4e9ebed8eb82cfd5a6b6d766",
"b776e53fb55f6b006a270d42d64ec2b1",
"d6cc32c857f1174b604eefc544f0c7f7",
"45c53aa1bb56fcd68c011e2dad6758e4",
"a2e79d200f27f2360fba57619936159b",
}
negOne := big.NewInt(-1)
one := big.NewInt(1)
two := big.NewInt(2)
for i, test := range tests {
want, _ := new(big.Int).SetString(test, 16)
nafPos, nafNeg := NAF(want.Bytes())
got := big.NewInt(0)
// Check that the NAF representation comes up with the right number
for i := 0; i < len(nafPos); i++ {
bytePos := nafPos[i]
byteNeg := nafNeg[i]
for j := 7; j >= 0; j-- {
got.Mul(got, two)
if bytePos&0x80 == 0x80 {
got.Add(got, one)
} else if byteNeg&0x80 == 0x80 {
got.Add(got, negOne)
}
bytePos <<= 1
byteNeg <<= 1
}
}
if got.Cmp(want) != 0 {
t.Errorf("%d: Failed NAF got %X want %X", i, got, want)
}
}
}
func TestNAFRand(t *testing.T) {
negOne := big.NewInt(-1)
one := big.NewInt(1)
two := big.NewInt(2)
for i := 0; i < 1024; i++ {
data := make([]byte, 32)
_, err := rand.Read(data)
if err != nil {
t.Fatalf("failed to read random data at %d", i)
break
}
nafPos, nafNeg := NAF(data)
want := new(big.Int).SetBytes(data)
got := big.NewInt(0)
// Check that the NAF representation comes up with the right number
for i := 0; i < len(nafPos); i++ {
bytePos := nafPos[i]
byteNeg := nafNeg[i]
for j := 7; j >= 0; j-- {
got.Mul(got, two)
if bytePos&0x80 == 0x80 {
got.Add(got, one)
} else if byteNeg&0x80 == 0x80 {
got.Add(got, negOne)
}
bytePos <<= 1
byteNeg <<= 1
}
}
if got.Cmp(want) != 0 {
t.Errorf("%d: Failed NAF got %X want %X", i, got, want)
}
}
}

View File

@ -1,152 +0,0 @@
package ecc
import (
"crypto/sha256"
"encoding/binary"
"math/big"
"github.com/kaspanet/kaspad/util/daghash"
)
// Multiset tracks the state of a multiset as used to calculate the ECMH
// (elliptic curve multiset hash) hash of an unordered set. The state is
// a point on the curve. New elements are hashed onto a point on the curve
// and then added to the current state. Hence elements can be added in any
// order and we can also remove elements to return to a prior hash.
type Multiset struct {
curve *KoblitzCurve
x *big.Int
y *big.Int
}
// NewMultiset returns an empty multiset. The hash of an empty set
// is the 32 byte value of zero.
func NewMultiset(curve *KoblitzCurve) *Multiset {
return &Multiset{curve: curve, x: big.NewInt(0), y: big.NewInt(0)}
}
// NewMultisetFromPoint initializes a new multiset with the given x, y
// coordinate.
func NewMultisetFromPoint(curve *KoblitzCurve, x, y *big.Int) *Multiset {
var copyX, copyY big.Int
if x != nil {
copyX.Set(x)
}
if y != nil {
copyY.Set(y)
}
return &Multiset{curve: curve, x: &copyX, y: &copyY}
}
// NewMultisetFromDataSlice gets a curve and a slice of byte
// slices, creates an empty multiset, hashes each data and
// add it to the multiset, and return the resulting multiset.
func NewMultisetFromDataSlice(curve *KoblitzCurve, datas [][]byte) *Multiset {
ms := NewMultiset(curve)
for _, data := range datas {
x, y := hashToPoint(curve, data)
ms.addPoint(x, y)
}
return ms
}
// Clone returns a clone of this multiset.
func (ms *Multiset) Clone() *Multiset {
return NewMultisetFromPoint(ms.curve, ms.x, ms.y)
}
// Add hashes the data onto the curve and returns
// a multiset with the new resulting point.
func (ms *Multiset) Add(data []byte) *Multiset {
newMs := ms.Clone()
x, y := hashToPoint(ms.curve, data)
newMs.addPoint(x, y)
return newMs
}
func (ms *Multiset) addPoint(x, y *big.Int) {
ms.x, ms.y = ms.curve.Add(ms.x, ms.y, x, y)
}
// Remove hashes the data onto the curve, subtracts
// the point from the existing multiset, and returns
// a multiset with the new point. This function
// will execute regardless of whether or not the passed
// data was previously added to the set. Hence if you
// remove an element that was never added and also remove
// all the elements that were added, you will not get
// back to the point at infinity (empty set).
func (ms *Multiset) Remove(data []byte) *Multiset {
newMs := ms.Clone()
x, y := hashToPoint(ms.curve, data)
newMs.removePoint(x, y)
return newMs
}
func (ms *Multiset) removePoint(x, y *big.Int) {
y.Neg(y).Mod(y, ms.curve.P)
ms.x, ms.y = ms.curve.Add(ms.x, ms.y, x, y)
}
// Union will add the point of the passed multiset instance to the point
// of this multiset and will return a multiset with the resulting point.
func (ms *Multiset) Union(otherMultiset *Multiset) *Multiset {
newMs := ms.Clone()
otherMsCopy := otherMultiset.Clone()
newMs.addPoint(otherMsCopy.x, otherMsCopy.y)
return newMs
}
// Subtract will remove the point of the passed multiset instance from the point
// of this multiset and will return a multiset with the resulting point.
func (ms *Multiset) Subtract(otherMultiset *Multiset) *Multiset {
newMs := ms.Clone()
otherMsCopy := otherMultiset.Clone()
newMs.removePoint(otherMsCopy.x, otherMsCopy.y)
return newMs
}
// Hash serializes and returns the hash of the multiset. The hash of an empty
// set is the 32 byte value of zero. The hash of a non-empty multiset is the
// sha256 hash of the 32 byte x value concatenated with the 32 byte y value.
func (ms *Multiset) Hash() *daghash.Hash {
if ms.x.Sign() == 0 && ms.y.Sign() == 0 {
return &daghash.Hash{}
}
hash := sha256.Sum256(append(ms.x.Bytes(), ms.y.Bytes()...))
castHash := daghash.Hash(hash)
return &castHash
}
// Point returns a copy of the x and y coordinates of the current multiset state.
func (ms *Multiset) Point() (x *big.Int, y *big.Int) {
var copyX, copyY big.Int
copyX.Set(ms.x)
copyY.Set(ms.y)
return &copyX, &copyY
}
// hashToPoint hashes the passed data into a point on the curve. The x value
// is sha256(n, sha256(data)) where n starts at zero. If the resulting x value
// is not in the field or x^3+7 is not quadratic residue then n is incremented
// and we try again. There is a 50% chance of success for any given iteration.
func hashToPoint(curve *KoblitzCurve, data []byte) (x *big.Int, y *big.Int) {
i := uint64(0)
var err error
h := sha256.Sum256(data)
n := make([]byte, 8)
for {
binary.LittleEndian.PutUint64(n, i)
h2 := sha256.Sum256(append(n, h[:]...))
x = new(big.Int).SetBytes(h2[:])
y, err = decompressPoint(curve, x, false)
if err == nil && x.Cmp(curve.N) < 0 {
break
}
i++
}
return x, y
}

View File

@ -1,213 +0,0 @@
package ecc
import (
"bytes"
"encoding/hex"
"testing"
"github.com/kaspanet/kaspad/util/daghash"
)
var testVectors = []struct {
dataElementHex string
point [2]string
ecmhHash string
cumulativeHash string
}{
{
"982051fd1e4ba744bbbe680e1fee14677ba1a3c3540bf7b1cdb606e857233e0e00000000010000000100f2052a0100000043410496b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52da7589379515d4e0a604f8141781e62294721166bf621e73a82cbf2342c858eeac",
[2]string{"4f9a5dce69067bf28603e73a7af4c3650b16539b95bad05eee95dfc94d1efe2c", "346d5b777881f2729e7f89b2de4e8e79c7f2f42d1a0b25a8f10becb66e2d0f98"},
"9378d88aa60cfba3032cb19f27891886e26fc6de1afa340c1787a633591983f8",
"",
},
{
"d5fdcc541e25de1c7a5addedf24858b8bb665c9f36ef744ee42c316022c90f9b00000000020000000100f2052a010000004341047211a824f55b505228e4c3d5194c1fcfaa15a456abdf37f9b9d97a4040afc073dee6c89064984f03385237d92167c13e236446b417ab79a0fcae412ae3316b77ac",
[2]string{"68cf91eb2388a0287c13d46011c73fb8efb6be89c0867a47feccb2d11c390d2d", "f42ba72b1079d3d941881836f88b5dcd7c207a6a4839f129272c77ebb7194d42"},
"e2f3dc6f3aa867c50bd41b80aa3bdafcc9e1d13a6292ff8a5da95da123d185ef",
"afaa1f7ba0bd8a789422fdd6968639a4b8575baf7d54342a987073d038fdbafa",
},
{
"44f672226090d85db9a9f2fbfe5f0f9609b387af7be5b7fbb7a1767c831c9e9900000000030000000100f2052a0100000043410494b9d3e76c5b1629ecf97fff95d7a4bbdac87cc26099ada28066c6ff1eb9191223cd897194a08d0c2726c5747f1db49e8cf90e75dc3e3550ae9b30086f3cd5aaac",
[2]string{"359c6f59859d1d5af8e7081905cb6bb734c010be8680c14b5a89ee315694fc2b", "fb6ba531d4bd83b14c970ad1bec332a8ae9a05706cd5df7fd91a2f2cc32482fe"},
"ffed6804617a4a33b1037cdd26426e61fde0faa2c0cc045efffa17c00ff4adcf",
"e236a694532be6a4926ab8d5b1ff9cbfe638178e0008b0a8c5e87c3da2cdbc1c",
},
}
func TestHashToPoint(t *testing.T) {
for _, test := range testVectors {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
x, y := hashToPoint(S256(), data)
if hex.EncodeToString(x.Bytes()) != test.point[0] || hex.EncodeToString(y.Bytes()) != test.point[1] {
t.Fatal("hashToPoint return incorrect point")
}
}
}
func TestMultiset_Hash(t *testing.T) {
for _, test := range testVectors {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
x, y := hashToPoint(S256(), data)
m := NewMultisetFromPoint(S256(), x, y)
if m.Hash().String() != test.ecmhHash {
t.Fatal("Multiset-Hash returned incorrect hash serialization")
}
}
m := NewMultiset(S256())
emptySet := m.Hash()
zeroHash := daghash.Hash{}
if !bytes.Equal(emptySet[:], zeroHash[:]) {
t.Fatal("Empty set did not return zero hash")
}
}
func TestMultiset_AddRemove(t *testing.T) {
m := NewMultiset(S256())
for i, test := range testVectors {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
m = m.Add(data)
if test.cumulativeHash != "" && m.Hash().String() != test.cumulativeHash {
t.Fatalf("Test #%d: Multiset-Add returned incorrect hash. Expected %s but got %s", i, test.cumulativeHash, m.Hash())
}
}
for i := len(testVectors) - 1; i > 0; i-- {
data, err := hex.DecodeString(testVectors[i].dataElementHex)
if err != nil {
t.Fatal(err)
}
m = m.Remove(data)
if testVectors[i-1].cumulativeHash != "" && m.Hash().String() != testVectors[i-1].cumulativeHash {
t.Fatalf("Test #%d: Multiset-Remove returned incorrect hash. Expected %s but got %s", i, testVectors[i].cumulativeHash, m.Hash())
}
}
}
func TestMultiset_UnionSubtract(t *testing.T) {
m1 := NewMultiset(S256())
zeroHash := m1.Hash().String()
for _, test := range testVectors {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
m1 = m1.Add(data)
}
m2 := NewMultiset(S256())
for _, test := range testVectors {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
m2 = m2.Remove(data)
}
m1m2Union := m1.Union(m2)
if m1m2Union.Hash().String() != zeroHash {
t.Fatalf("m1m2Union was expected to return to have zero hash, but was %s instead", m1m2Union.Hash())
}
m1Inverse := NewMultiset(S256()).Subtract(m1)
m1InverseM1Union := m1.Union(m1Inverse)
if m1InverseM1Union.Hash().String() != zeroHash {
t.Fatalf("m1InverseM1Union was expected to have zero hash, but got %s instead", m1InverseM1Union.Hash())
}
m1SubtractM1 := m1.Subtract(m1)
if m1SubtractM1.Hash().String() != zeroHash {
t.Fatalf("m1SubtractM1 was expected to have zero hash, but got %s instead", m1SubtractM1.Hash())
}
}
func TestMultiset_Commutativity(t *testing.T) {
m := NewMultiset(S256())
zeroHash := m.Hash().String()
// Check that if we subtract values from zero and then re-add them, we return to zero.
for _, test := range testVectors {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
m = m.Remove(data)
}
for _, test := range testVectors {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
m = m.Add(data)
}
if m.Hash().String() != zeroHash {
t.Fatalf("m was expected to be zero hash, but was %s instead", m.Hash())
}
// Here we first remove an element from an empty multiset, and then add some other
// elements, and then we create a new empty multiset, then we add the same elements
// we added to the previous multiset, and then we remove the same element we remove
// the same element we removed from the previous multiset. According to commutativity
// laws, the result should be the same.
removeIndex := 0
removeData, err := hex.DecodeString(testVectors[removeIndex].dataElementHex)
if err != nil {
t.Fatal(err)
}
m1 := NewMultiset(S256())
m1 = m1.Remove(removeData)
for i, test := range testVectors {
if i != removeIndex {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
m1 = m1.Add(data)
}
}
m2 := NewMultiset(S256())
for i, test := range testVectors {
if i != removeIndex {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
m2 = m2.Add(data)
}
}
m2 = m2.Remove(removeData)
if m1.Hash().String() != m2.Hash().String() {
t.Fatalf("m1 and m2 was exepcted to have the same hash, but got instead m1 %s and m2 %s", m1.Hash(), m2.Hash())
}
}
func TestMultiset_NewMultisetFromDataSlice(t *testing.T) {
m1 := NewMultiset(S256())
datas := make([][]byte, 0, len(testVectors))
for _, test := range testVectors {
data, err := hex.DecodeString(test.dataElementHex)
if err != nil {
t.Fatal(err)
}
datas = append(datas, data)
m1 = m1.Add(data)
}
m2 := NewMultisetFromDataSlice(S256(), datas)
if m1.Hash().String() != m2.Hash().String() {
t.Fatalf("m1 and m2 was exepcted to have the same hash, but got instead m1 %s and m2 %s", m1.Hash(), m2.Hash())
}
}

View File

@ -1,87 +0,0 @@
// Copyright (c) 2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc_test
import (
"encoding/hex"
"fmt"
"github.com/kaspanet/kaspad/util/daghash"
"github.com/kaspanet/kaspad/ecc"
)
// This example demonstrates signing a message with a secp256k1 private key that
// is first parsed form raw bytes and serializing the generated signature.
func Example_signMessage() {
// Decode a hex-encoded private key.
pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" +
"20ee63e502ee2869afab7de234b80c")
if err != nil {
fmt.Println(err)
return
}
privKey, pubKey := ecc.PrivKeyFromBytes(ecc.S256(), pkBytes)
// Sign a message using the private key.
message := "test message"
messageHash := daghash.DoubleHashB([]byte(message))
signature, err := privKey.Sign(messageHash)
if err != nil {
fmt.Println(err)
return
}
// Serialize and display the signature.
fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
// Verify the signature for the message using the public key.
verified := signature.Verify(messageHash, pubKey)
fmt.Printf("Signature Verified? %v\n", verified)
// Output:
// Serialized Signature: 275d1c73a01b023377633cd1eaa6460e8cd0542ba089ad50450a8197246b3ef6d6836ef5a18226132c305e2b2060a699529cadc816fc98d63bc7d05771acec4d
// Signature Verified? true
}
// This example demonstrates verifying a secp256k1 signature against a public
// key that is first parsed from raw bytes. The signature is also parsed from
// raw bytes.
func Example_verifySignature() {
// Decode hex-encoded serialized public key.
pubKeyBytes, err := hex.DecodeString("02a673638cb9587cb68ea08dbef685c" +
"6f2d2a751a8b3c6f2a7e9a4999e6e4bfaf5")
if err != nil {
fmt.Println(err)
return
}
pubKey, err := ecc.ParsePubKey(pubKeyBytes, ecc.S256())
if err != nil {
fmt.Println(err)
return
}
// Decode hex-encoded serialized signature.
sigBytes, err := hex.DecodeString("275d1c73a01b023377633cd1eaa6460e8cd0542ba" +
"089ad50450a8197246b3ef6d6836ef5a18226132c305e2b2060a699529cadc816fc98d63bc7d05771acec4d")
if err != nil {
fmt.Println(err)
return
}
signature, err := ecc.ParseSignature(sigBytes)
if err != nil {
fmt.Println(err)
return
}
// Verify the signature for the message using the public key.
message := "test message"
messageHash := daghash.DoubleHashB([]byte(message))
verified := signature.Verify(messageHash, pubKey)
fmt.Println("Signature Verified?", verified)
// Output:
// Signature Verified? true
}

File diff suppressed because it is too large Load Diff

View File

@ -1,822 +0,0 @@
// Copyright (c) 2013-2016 The btcsuite developers
// Copyright (c) 2013-2016 Dave Collins
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"reflect"
"testing"
)
// TestSetInt ensures that setting a field value to various native integers
// works as expected.
func TestSetInt(t *testing.T) {
tests := []struct {
in uint
raw [10]uint32
}{
{5, [10]uint32{5, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
// 2^26
{67108864, [10]uint32{67108864, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
// 2^26 + 1
{67108865, [10]uint32{67108865, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
// 2^32 - 1
{4294967295, [10]uint32{4294967295, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetInt(test.in)
if !reflect.DeepEqual(f.n, test.raw) {
t.Errorf("fieldVal.Set #%d wrong result\ngot: %v\n"+
"want: %v", i, f.n, test.raw)
continue
}
}
}
// TestZero ensures that zeroing a field value zero works as expected.
func TestZero(t *testing.T) {
f := new(fieldVal).SetInt(2)
f.Zero()
for idx, rawInt := range f.n {
if rawInt != 0 {
t.Errorf("internal field integer at index #%d is not "+
"zero - got %d", idx, rawInt)
}
}
}
// TestIsZero ensures that checking if a field IsZero works as expected.
func TestIsZero(t *testing.T) {
f := new(fieldVal)
if !f.IsZero() {
t.Errorf("new field value is not zero - got %v (rawints %x)", f,
f.n)
}
f.SetInt(1)
if f.IsZero() {
t.Errorf("field claims it's zero when it's not - got %v "+
"(raw rawints %x)", f, f.n)
}
f.Zero()
if !f.IsZero() {
t.Errorf("field claims it's not zero when it is - got %v "+
"(raw rawints %x)", f, f.n)
}
}
// TestStringer ensures the stringer returns the appropriate hex string.
func TestStringer(t *testing.T) {
tests := []struct {
in string
expected string
}{
{"0", "0000000000000000000000000000000000000000000000000000000000000000"},
{"1", "0000000000000000000000000000000000000000000000000000000000000001"},
{"a", "000000000000000000000000000000000000000000000000000000000000000a"},
{"b", "000000000000000000000000000000000000000000000000000000000000000b"},
{"c", "000000000000000000000000000000000000000000000000000000000000000c"},
{"d", "000000000000000000000000000000000000000000000000000000000000000d"},
{"e", "000000000000000000000000000000000000000000000000000000000000000e"},
{"f", "000000000000000000000000000000000000000000000000000000000000000f"},
{"f0", "00000000000000000000000000000000000000000000000000000000000000f0"},
// 2^26-1
{
"3ffffff",
"0000000000000000000000000000000000000000000000000000000003ffffff",
},
// 2^32-1
{
"ffffffff",
"00000000000000000000000000000000000000000000000000000000ffffffff",
},
// 2^64-1
{
"ffffffffffffffff",
"000000000000000000000000000000000000000000000000ffffffffffffffff",
},
// 2^96-1
{
"ffffffffffffffffffffffff",
"0000000000000000000000000000000000000000ffffffffffffffffffffffff",
},
// 2^128-1
{
"ffffffffffffffffffffffffffffffff",
"00000000000000000000000000000000ffffffffffffffffffffffffffffffff",
},
// 2^160-1
{
"ffffffffffffffffffffffffffffffffffffffff",
"000000000000000000000000ffffffffffffffffffffffffffffffffffffffff",
},
// 2^192-1
{
"ffffffffffffffffffffffffffffffffffffffffffffffff",
"0000000000000000ffffffffffffffffffffffffffffffffffffffffffffffff",
},
// 2^224-1
{
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
"00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
},
// 2^256-4294968273 (the ecc prime, so should result in 0)
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f",
"0000000000000000000000000000000000000000000000000000000000000000",
},
// 2^256-4294968274 (the secp256k1 prime+1, so should result in 1)
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc30",
"0000000000000000000000000000000000000000000000000000000000000001",
},
// Invalid hex
{"g", "0000000000000000000000000000000000000000000000000000000000000000"},
{"1h", "0000000000000000000000000000000000000000000000000000000000000000"},
{"i1", "0000000000000000000000000000000000000000000000000000000000000000"},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in)
result := f.String()
if result != test.expected {
t.Errorf("fieldVal.String #%d wrong result\ngot: %v\n"+
"want: %v", i, result, test.expected)
continue
}
}
}
// TestNormalize ensures that normalizing the internal field words works as
// expected.
func TestNormalize(t *testing.T) {
tests := []struct {
raw [10]uint32 // Intentionally denormalized value
normalized [10]uint32 // Normalized form of the raw value
}{
{
[10]uint32{0x00000005, 0, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000005, 0, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^26
{
[10]uint32{0x04000000, 0x0, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x1, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^26 + 1
{
[10]uint32{0x04000001, 0x0, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000001, 0x1, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^32 - 1
{
[10]uint32{0xffffffff, 0x00, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x03ffffff, 0x3f, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^32
{
[10]uint32{0x04000000, 0x3f, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x40, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^32 + 1
{
[10]uint32{0x04000001, 0x3f, 0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000001, 0x40, 0, 0, 0, 0, 0, 0, 0, 0},
},
// 2^64 - 1
{
[10]uint32{0xffffffff, 0xffffffc0, 0xfc0, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x03ffffff, 0x03ffffff, 0xfff, 0, 0, 0, 0, 0, 0, 0},
},
// 2^64
{
[10]uint32{0x04000000, 0x03ffffff, 0x0fff, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x00000000, 0x1000, 0, 0, 0, 0, 0, 0, 0},
},
// 2^64 + 1
{
[10]uint32{0x04000001, 0x03ffffff, 0x0fff, 0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000001, 0x00000000, 0x1000, 0, 0, 0, 0, 0, 0, 0},
},
// 2^96 - 1
{
[10]uint32{0xffffffff, 0xffffffc0, 0xffffffc0, 0x3ffc0, 0, 0, 0, 0, 0, 0},
[10]uint32{0x03ffffff, 0x03ffffff, 0x03ffffff, 0x3ffff, 0, 0, 0, 0, 0, 0},
},
// 2^96
{
[10]uint32{0x04000000, 0x03ffffff, 0x03ffffff, 0x3ffff, 0, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x00000000, 0x00000000, 0x40000, 0, 0, 0, 0, 0, 0},
},
// 2^128 - 1
{
[10]uint32{0xffffffff, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffc0, 0, 0, 0, 0, 0},
[10]uint32{0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0xffffff, 0, 0, 0, 0, 0},
},
// 2^128
{
[10]uint32{0x04000000, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x0ffffff, 0, 0, 0, 0, 0},
[10]uint32{0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x1000000, 0, 0, 0, 0, 0},
},
// 2^256 - 4294968273 (secp256k1 prime)
{
[10]uint32{0xfffffc2f, 0xffffff80, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0x3fffc0},
[10]uint32{0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000},
},
// Prime larger than P where both first and second words are larger
// than P's first and second words
{
[10]uint32{0xfffffc30, 0xffffff86, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0x3fffc0},
[10]uint32{0x00000001, 0x00000006, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000},
},
// Prime larger than P where only the second word is larger
// than P's second words.
{
[10]uint32{0xfffffc2a, 0xffffff87, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0x3fffc0},
[10]uint32{0x03fffffb, 0x00000006, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000},
},
// 2^256 - 1
{
[10]uint32{0xffffffff, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0xffffffc0, 0x3fffc0},
[10]uint32{0x000003d0, 0x00000040, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000},
},
// Prime with field representation such that the initial
// reduction does not result in a carry to bit 256.
//
// 2^256 - 4294968273 (secp256k1 prime)
{
[10]uint32{0x03fffc2f, 0x03ffffbf, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x003fffff},
[10]uint32{0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
},
// Prime larger than P that reduces to a value which is still
// larger than P when it has a magnitude of 1 due to its first
// word and does not result in a carry to bit 256.
//
// 2^256 - 4294968272 (secp256k1 prime + 1)
{
[10]uint32{0x03fffc30, 0x03ffffbf, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x003fffff},
[10]uint32{0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
},
// Prime larger than P that reduces to a value which is still
// larger than P when it has a magnitude of 1 due to its second
// word and does not result in a carry to bit 256.
//
// 2^256 - 4227859409 (secp256k1 prime + 0x4000000)
{
[10]uint32{0x03fffc2f, 0x03ffffc0, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x003fffff},
[10]uint32{0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000},
},
// Prime larger than P that reduces to a value which is still
// larger than P when it has a magnitude of 1 due to a carry to
// bit 256, but would not be without the carry. These values
// come from the fact that P is 2^256 - 4294968273 and 977 is
// the low order word in the internal field representation.
//
// 2^256 * 5 - ((4294968273 - (977+1)) * 4)
{
[10]uint32{0x03ffffff, 0x03fffeff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x0013fffff},
[10]uint32{0x00001314, 0x00000040, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000000},
},
// Prime larger than P that reduces to a value which is still
// larger than P when it has a magnitude of 1 due to both a
// carry to bit 256 and the first word.
{
[10]uint32{0x03fffc30, 0x03ffffbf, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x07ffffff, 0x003fffff},
[10]uint32{0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000001},
},
// Prime larger than P that reduces to a value which is still
// larger than P when it has a magnitude of 1 due to both a
// carry to bit 256 and the second word.
//
{
[10]uint32{0x03fffc2f, 0x03ffffc0, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x3ffffff, 0x07ffffff, 0x003fffff},
[10]uint32{0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000000, 0x00000000, 0x00000001},
},
// Prime larger than P that reduces to a value which is still
// larger than P when it has a magnitude of 1 due to a carry to
// bit 256 and the first and second words.
//
{
[10]uint32{0x03fffc30, 0x03ffffc0, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x03ffffff, 0x07ffffff, 0x003fffff},
[10]uint32{0x00000001, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000001},
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal)
f.n = test.raw
f.Normalize()
if !reflect.DeepEqual(f.n, test.normalized) {
t.Errorf("fieldVal.Normalize #%d wrong result\n"+
"got: %x\nwant: %x", i, f.n, test.normalized)
continue
}
}
}
// TestIsOdd ensures that checking if a field value IsOdd works as expected.
func TestIsOdd(t *testing.T) {
tests := []struct {
in string // hex encoded value
expected bool // expected oddness
}{
{"0", false},
{"1", true},
{"2", false},
// 2^32 - 1
{"ffffffff", true},
// 2^64 - 2
{"fffffffffffffffe", false},
// secp256k1 prime
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", true},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in)
result := f.IsOdd()
if result != test.expected {
t.Errorf("fieldVal.IsOdd #%d wrong result\n"+
"got: %v\nwant: %v", i, result, test.expected)
continue
}
}
}
// TestEquals ensures that checking two field values for equality via Equals
// works as expected.
func TestEquals(t *testing.T) {
tests := []struct {
in1 string // hex encoded value
in2 string // hex encoded value
expected bool // expected equality
}{
{"0", "0", true},
{"0", "1", false},
{"1", "0", false},
// 2^32 - 1 == 2^32 - 1?
{"ffffffff", "ffffffff", true},
// 2^64 - 1 == 2^64 - 2?
{"ffffffffffffffff", "fffffffffffffffe", false},
// 0 == prime (mod prime)?
{"0", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", true},
// 1 == prime+1 (mod prime)?
{"1", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc30", true},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in1).Normalize()
f2 := new(fieldVal).SetHex(test.in2).Normalize()
result := f.Equals(f2)
if result != test.expected {
t.Errorf("fieldVal.Equals #%d wrong result\n"+
"got: %v\nwant: %v", i, result, test.expected)
continue
}
}
}
// TestNegate ensures that negating field values via Negate works as expected.
func TestNegate(t *testing.T) {
tests := []struct {
in string // hex encoded value
expected string // expected hex encoded value
}{
// secp256k1 prime (aka 0)
{"0", "0"},
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "0"},
{"0", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"},
// secp256k1 prime-1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", "1"},
{"1", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e"},
// secp256k1 prime-2
{"2", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d"},
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d", "2"},
// Random sampling
{
"b3d9aac9c5e43910b4385b53c7e78c21d4cd5f8e683c633aed04c233efc2e120",
"4c2655363a1bc6ef4bc7a4ac381873de2b32a07197c39cc512fb3dcb103d1b0f",
},
{
"f8a85984fee5a12a7c8dd08830d83423c937d77c379e4a958e447a25f407733f",
"757a67b011a5ed583722f77cf27cbdc36c82883c861b56a71bb85d90bf888f0",
},
{
"45ee6142a7fda884211e93352ed6cb2807800e419533be723a9548823ece8312",
"ba119ebd5802577bdee16ccad12934d7f87ff1be6acc418dc56ab77cc131791d",
},
{
"53c2a668f07e411a2e473e1c3b6dcb495dec1227af27673761d44afe5b43d22b",
"ac3d59970f81bee5d1b8c1e3c49234b6a213edd850d898c89e2bb500a4bc2a04",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in).Normalize()
expected := new(fieldVal).SetHex(test.expected).Normalize()
result := f.Negate(1).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Negate #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestAddInt ensures that adding an integer to field values via AddInt works as
// expected.
func TestAddInt(t *testing.T) {
tests := []struct {
in1 string // hex encoded value
in2 uint // unsigned integer to add to the value above
expected string // expected hex encoded value
}{
{"0", 1, "1"},
{"1", 0, "1"},
{"1", 1, "2"},
// secp256k1 prime-1 + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", 1, "0"},
// secp256k1 prime + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", 1, "1"},
// Random samples.
{
"ff95ad9315aff04ab4af0ce673620c7145dc85d03bab5ba4b09ca2c4dec2d6c1",
0x10f,
"ff95ad9315aff04ab4af0ce673620c7145dc85d03bab5ba4b09ca2c4dec2d7d0",
},
{
"44bdae6b772e7987941f1ba314e6a5b7804a4c12c00961b57d20f41deea9cecf",
0x2cf11d41,
"44bdae6b772e7987941f1ba314e6a5b7804a4c12c00961b57d20f41e1b9aec10",
},
{
"88c3ecae67b591935fb1f6a9499c35315ffad766adca665c50b55f7105122c9c",
0x4829aa2d,
"88c3ecae67b591935fb1f6a9499c35315ffad766adca665c50b55f714d3bd6c9",
},
{
"8523e9edf360ca32a95aae4e57fcde5a542b471d08a974d94ea0ee09a015e2a6",
0xa21265a5,
"8523e9edf360ca32a95aae4e57fcde5a542b471d08a974d94ea0ee0a4228484b",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in1).Normalize()
expected := new(fieldVal).SetHex(test.expected).Normalize()
result := f.AddInt(test.in2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.AddInt #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestAdd ensures that adding two field values together via Add works as
// expected.
func TestAdd(t *testing.T) {
tests := []struct {
in1 string // first hex encoded value
in2 string // second hex encoded value to add
expected string // expected hex encoded value
}{
{"0", "1", "1"},
{"1", "0", "1"},
{"1", "1", "2"},
// secp256k1 prime-1 + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", "1", "0"},
// secp256k1 prime + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "1", "1"},
// Random samples.
{
"2b2012f975404e5065b4292fb8bed0a5d315eacf24c74d8b27e73bcc5430edcc",
"2c3cefa4e4753e8aeec6ac4c12d99da4d78accefda3b7885d4c6bab46c86db92",
"575d029e59b58cdb547ad57bcb986e4aaaa0b7beff02c610fcadf680c0b7c95e",
},
{
"8131e8722fe59bb189692b96c9f38de92885730f1dd39ab025daffb94c97f79c",
"ff5454b765f0aab5f0977dcc629becc84cabeb9def48e79c6aadb2622c490fa9",
"80863d2995d646677a00a9632c8f7ab175315ead0d1c824c9088b21c78e10b16",
},
{
"c7c95e93d0892b2b2cdd77e80eb646ea61be7a30ac7e097e9f843af73fad5c22",
"3afe6f91a74dfc1c7f15c34907ee981656c37236d946767dd53ccad9190e437c",
"02c7ce2577d72747abf33b3116a4df00b881ec6785c47ffc74c105d158bba36f",
},
{
"fd1c26f6a23381e5d785ba889494ec059369b888ad8431cd67d8c934b580dbe1",
"a475aa5a31dcca90ef5b53c097d9133d6b7117474b41e7877bb199590fc0489c",
"a191d150d4104c76c6e10e492c6dff42fedacfcff8c61954e38a628ec541284e",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in1).Normalize()
f2 := new(fieldVal).SetHex(test.in2).Normalize()
expected := new(fieldVal).SetHex(test.expected).Normalize()
result := f.Add(f2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Add #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestAdd2 ensures that adding two field values together via Add2 works as
// expected.
func TestAdd2(t *testing.T) {
tests := []struct {
in1 string // first hex encoded value
in2 string // second hex encoded value to add
expected string // expected hex encoded value
}{
{"0", "1", "1"},
{"1", "0", "1"},
{"1", "1", "2"},
// secp256k1 prime-1 + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", "1", "0"},
// secp256k1 prime + 1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "1", "1"},
// close but over the secp256k1 prime
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffff000000000", "f1ffff000", "1ffff3d1"},
// Random samples.
{
"ad82b8d1cc136e23e9fd77fe2c7db1fe5a2ecbfcbde59ab3529758334f862d28",
"4d6a4e95d6d61f4f46b528bebe152d408fd741157a28f415639347a84f6f574b",
"faed0767a2e98d7330b2a0bcea92df3eea060d12380e8ec8b62a9fdb9ef58473",
},
{
"f3f43a2540054a86e1df98547ec1c0e157b193e5350fb4a3c3ea214b228ac5e7",
"25706572592690ea3ddc951a1b48b504a4c83dc253756e1b96d56fdfb3199522",
"19649f97992bdb711fbc2d6e9a0a75e5fc79d1a7888522bf5abf912bd5a45eda",
},
{
"6915bb94eef13ff1bb9b2633d997e13b9b1157c713363cc0e891416d6734f5b8",
"11f90d6ac6fe1c4e8900b1c85fb575c251ec31b9bc34b35ada0aea1c21eded22",
"7b0ec8ffb5ef5c40449bd7fc394d56fdecfd8980cf6af01bc29c2b898922e2da",
},
{
"48b0c9eae622eed9335b747968544eb3e75cb2dc8128388f948aa30f88cabde4",
"0989882b52f85f9d524a3a3061a0e01f46d597839d2ba637320f4b9510c8d2d5",
"523a5216391b4e7685a5aea9c9f52ed32e324a601e53dec6c699eea4999390b9",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in1).Normalize()
f2 := new(fieldVal).SetHex(test.in2).Normalize()
expected := new(fieldVal).SetHex(test.expected).Normalize()
result := f.Add2(f, f2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Add2 #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestMulInt ensures that adding an integer to field values via MulInt works as
// expected.
func TestMulInt(t *testing.T) {
tests := []struct {
in1 string // hex encoded value
in2 uint // unsigned integer to multiply with value above
expected string // expected hex encoded value
}{
{"0", 0, "0"},
{"1", 0, "0"},
{"0", 1, "0"},
{"1", 1, "1"},
// secp256k1 prime-1 * 2
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
2,
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d",
},
// secp256k1 prime * 3
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", 3, "0"},
// secp256k1 prime-1 * 8
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
8,
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc27",
},
// Random samples for first value. The second value is limited
// to 8 since that is the maximum int used in the elliptic curve
// calculations.
{
"b75674dc9180d306c692163ac5e089f7cef166af99645c0c23568ab6d967288a",
6,
"4c06bd2b6904f228a76c8560a3433bced9a8681d985a2848d407404d186b0280",
},
{
"54873298ac2b5ba8591c125ae54931f5ea72040aee07b208d6135476fb5b9c0e",
3,
"fd9597ca048212f90b543710afdb95e1bf560c20ca17161a8239fd64f212d42a",
},
{
"7c30fbd363a74c17e1198f56b090b59bbb6c8755a74927a6cba7a54843506401",
5,
"6cf4eb20f2447c77657fccb172d38c0aa91ea4ac446dc641fa463a6b5091fba7",
},
{
"fb4529be3e027a3d1587d8a500b72f2d312e3577340ef5175f96d113be4c2ceb",
8,
"da294df1f013d1e8ac3ec52805b979698971abb9a077a8bafcb688a4f261820f",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in1).Normalize()
expected := new(fieldVal).SetHex(test.expected).Normalize()
result := f.MulInt(test.in2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.MulInt #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestMul ensures that multiplying two field valuess via Mul works as expected.
func TestMul(t *testing.T) {
tests := []struct {
in1 string // first hex encoded value
in2 string // second hex encoded value to multiply with
expected string // expected hex encoded value
}{
{"0", "0", "0"},
{"1", "0", "0"},
{"0", "1", "0"},
{"1", "1", "1"},
// slightly over prime
{
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff1ffff",
"1000",
"1ffff3d1",
},
// secp256k1 prime-1 * 2
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
"2",
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d",
},
// secp256k1 prime * 3
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "3", "0"},
// secp256k1 prime-1 * 8
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
"8",
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc27",
},
// Random samples.
{
"cfb81753d5ef499a98ecc04c62cb7768c2e4f1740032946db1c12e405248137e",
"58f355ad27b4d75fb7db0442452e732c436c1f7c5a7c4e214fa9cc031426a7d3",
"1018cd2d7c2535235b71e18db9cd98027386328d2fa6a14b36ec663c4c87282b",
},
{
"26e9d61d1cdf3920e9928e85fa3df3e7556ef9ab1d14ec56d8b4fc8ed37235bf",
"2dfc4bbe537afee979c644f8c97b31e58be5296d6dbc460091eae630c98511cf",
"da85f48da2dc371e223a1ae63bd30b7e7ee45ae9b189ac43ff357e9ef8cf107a",
},
{
"5db64ed5afb71646c8b231585d5b2bf7e628590154e0854c4c29920b999ff351",
"279cfae5eea5d09ade8e6a7409182f9de40981bc31c84c3d3dfe1d933f152e9a",
"2c78fbae91792dd0b157abe3054920049b1879a7cc9d98cfda927d83be411b37",
},
{
"b66dfc1f96820b07d2bdbd559c19319a3a73c97ceb7b3d662f4fe75ecb6819e6",
"bf774aba43e3e49eb63a6e18037d1118152568f1a3ac4ec8b89aeb6ff8008ae1",
"c4f016558ca8e950c21c3f7fc15f640293a979c7b01754ee7f8b3340d4902ebb",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in1).Normalize()
f2 := new(fieldVal).SetHex(test.in2).Normalize()
expected := new(fieldVal).SetHex(test.expected).Normalize()
result := f.Mul(f2).Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Mul #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestSquare ensures that squaring field values via Square works as expected.
func TestSquare(t *testing.T) {
tests := []struct {
in string // hex encoded value
expected string // expected hex encoded value
}{
// secp256k1 prime (aka 0)
{"0", "0"},
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "0"},
{"0", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"},
// secp256k1 prime-1
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e", "1"},
// secp256k1 prime-2
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d", "4"},
// Random sampling
{
"b0ba920360ea8436a216128047aab9766d8faf468895eb5090fc8241ec758896",
"133896b0b69fda8ce9f648b9a3af38f345290c9eea3cbd35bafcadf7c34653d3",
},
{
"c55d0d730b1d0285a1599995938b042a756e6e8857d390165ffab480af61cbd5",
"cd81758b3f5877cbe7e5b0a10cebfa73bcbf0957ca6453e63ee8954ab7780bee",
},
{
"e89c1f9a70d93651a1ba4bca5b78658f00de65a66014a25544d3365b0ab82324",
"39ffc7a43e5dbef78fd5d0354fb82c6d34f5a08735e34df29da14665b43aa1f",
},
{
"7dc26186079d22bcbe1614aa20ae627e62d72f9be7ad1e99cac0feb438956f05",
"bf86bcfc4edb3d81f916853adfda80c07c57745b008b60f560b1912f95bce8ae",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in).Normalize()
expected := new(fieldVal).SetHex(test.expected).Normalize()
result := f.Square().Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Square #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}
// TestInverse ensures that finding the multiplicative inverse via Inverse works
// as expected.
func TestInverse(t *testing.T) {
tests := []struct {
in string // hex encoded value
expected string // expected hex encoded value
}{
// secp256k1 prime (aka 0)
{"0", "0"},
{"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f", "0"},
{"0", "fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"},
// secp256k1 prime-1
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2e",
},
// secp256k1 prime-2
{
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2d",
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffff7ffffe17",
},
// Random sampling
{
"16fb970147a9acc73654d4be233cc48b875ce20a2122d24f073d29bd28805aca",
"987aeb257b063df0c6d1334051c47092b6d8766c4bf10c463786d93f5bc54354",
},
{
"69d1323ce9f1f7b3bd3c7320b0d6311408e30281e273e39a0d8c7ee1c8257919",
"49340981fa9b8d3dad72de470b34f547ed9179c3953797d0943af67806f4bb6",
},
{
"e0debf988ae098ecda07d0b57713e97c6d213db19753e8c95aa12a2fc1cc5272",
"64f58077b68af5b656b413ea366863f7b2819f8d27375d9c4d9804135ca220c2",
},
{
"dcd394f91f74c2ba16aad74a22bb0ed47fe857774b8f2d6c09e28bfb14642878",
"fb848ec64d0be572a63c38fe83df5e7f3d032f60bf8c969ef67d36bf4ada22a9",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
f := new(fieldVal).SetHex(test.in).Normalize()
expected := new(fieldVal).SetHex(test.expected).Normalize()
result := f.Inverse().Normalize()
if !result.Equals(expected) {
t.Errorf("fieldVal.Inverse #%d wrong result\n"+
"got: %v\nwant: %v", i, result, expected)
continue
}
}
}

View File

@ -1,63 +0,0 @@
// Copyright 2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// This file is ignored during the regular build due to the following build tag.
// It is called by go generate and used to automatically generate pre-computed
// tables used to accelerate operations.
// +build ignore
package main
import (
"bytes"
"compress/zlib"
"encoding/base64"
"fmt"
"log"
"os"
"github.com/kaspanet/kaspad/ecc"
)
func main() {
fi, err := os.Create("secp256k1.go")
if err != nil {
log.Fatal(err)
}
defer fi.Close()
// Compress the serialized byte points.
serialized := ecc.S256().SerializedBytePoints()
var compressed bytes.Buffer
w := zlib.NewWriter(&compressed)
if _, err := w.Write(serialized); err != nil {
fmt.Println(err)
os.Exit(1)
}
w.Close()
// Encode the compressed byte points with base64.
encoded := make([]byte, base64.StdEncoding.EncodedLen(compressed.Len()))
base64.StdEncoding.Encode(encoded, compressed.Bytes())
fmt.Fprintln(fi, "// Copyright (c) 2015 The btcsuite developers")
fmt.Fprintln(fi, "// Use of this source code is governed by an ISC")
fmt.Fprintln(fi, "// license that can be found in the LICENSE file.")
fmt.Fprintln(fi)
fmt.Fprintln(fi, "package ecc")
fmt.Fprintln(fi)
fmt.Fprintln(fi, "// Auto-generated file (see genprecomps.go)")
fmt.Fprintln(fi, "// DO NOT EDIT")
fmt.Fprintln(fi)
fmt.Fprintf(fi, "var secp256k1BytePoints = %q\n", string(encoded))
a1, b1, a2, b2 := ecc.S256().EndomorphismVectors()
fmt.Println("The following values are the computed linearly " +
"independent vectors needed to make use of the secp256k1 " +
"endomorphism:")
fmt.Printf("a1: %x\n", a1)
fmt.Printf("b1: %x\n", b1)
fmt.Printf("a2: %x\n", a2)
fmt.Printf("b2: %x\n", b2)
}

View File

@ -1,203 +0,0 @@
// Copyright (c) 2014-2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// This file is ignored during the regular build due to the following build tag.
// This build tag is set during go generate.
// +build gensecp256k1
package ecc
// References:
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
import (
"encoding/binary"
"math/big"
)
// secp256k1BytePoints are dummy points used so the code which generates the
// real values can compile.
var secp256k1BytePoints = ""
// getDoublingPoints returns all the possible G^(2^i) for i in
// 0..n-1 where n is the curve's bit size (256 in the case of secp256k1)
// the coordinates are recorded as Jacobian coordinates.
func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal {
doublingPoints := make([][3]fieldVal, curve.BitSize)
// initialize px, py, pz to the Jacobian coordinates for the base point
px, py := curve.bigAffineToField(curve.Gx, curve.Gy)
pz := new(fieldVal).SetInt(1)
for i := 0; i < curve.BitSize; i++ {
doublingPoints[i] = [3]fieldVal{*px, *py, *pz}
// P = 2*P
curve.doubleJacobian(px, py, pz, px, py, pz)
}
return doublingPoints
}
// SerializedBytePoints returns a serialized byte slice which contains all of
// the possible points per 8-bit window. This is used to when generating
// secp256k1.go.
func (curve *KoblitzCurve) SerializedBytePoints() []byte {
doublingPoints := curve.getDoublingPoints()
// Segregate the bits into byte-sized windows
serialized := make([]byte, curve.byteSize*256*3*10*4)
offset := 0
for byteNum := 0; byteNum < curve.byteSize; byteNum++ {
// Grab the 8 bits that make up this byte from doublingPoints.
startingBit := 8 * (curve.byteSize - byteNum - 1)
computingPoints := doublingPoints[startingBit : startingBit+8]
// Compute all points in this window and serialize them.
for i := 0; i < 256; i++ {
px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal)
for j := 0; j < 8; j++ {
if i>>uint(j)&1 == 1 {
curve.addJacobian(px, py, pz, &computingPoints[j][0],
&computingPoints[j][1], &computingPoints[j][2], px, py, pz)
}
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], px.n[i])
offset += 4
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], py.n[i])
offset += 4
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i])
offset += 4
}
}
}
return serialized
}
// sqrt returns the square root of the provided big integer using Newton's
// method. It's only compiled and used during generation of pre-computed
// values, so speed is not a huge concern.
func sqrt(n *big.Int) *big.Int {
// Initial guess = 2^(log_2(n)/2)
guess := big.NewInt(2)
guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil)
// Now refine using Newton's method.
big2 := big.NewInt(2)
prevGuess := big.NewInt(0)
for {
prevGuess.Set(guess)
guess.Add(guess, new(big.Int).Div(n, guess))
guess.Div(guess, big2)
if guess.Cmp(prevGuess) == 0 {
break
}
}
return guess
}
// EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to
// generate the linearly independent vectors needed to generate a balanced
// length-two representation of a multiplier such that k = k1 + k2λ (mod N) and
// returns them. Since the values will always be the same given the fact that N
// and λ are fixed, the final results can be accelerated by storing the
// precomputed values with the curve.
func (curve *KoblitzCurve) EndomorphismVectors() (a1, b1, a2, b2 *big.Int) {
bigMinus1 := big.NewInt(-1)
// This section uses an extended Euclidean algorithm to generate a
// sequence of equations:
// s[i] * N + t[i] * λ = r[i]
nSqrt := sqrt(curve.N)
u, v := new(big.Int).Set(curve.N), new(big.Int).Set(curve.lambda)
x1, y1 := big.NewInt(1), big.NewInt(0)
x2, y2 := big.NewInt(0), big.NewInt(1)
q, r := new(big.Int), new(big.Int)
qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int)
s, t := new(big.Int), new(big.Int)
ri, ti := new(big.Int), new(big.Int)
a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int)
found, oneMore := false, false
for u.Sign() != 0 {
// q = v/u
q.Div(v, u)
// r = v - q*u
qu.Mul(q, u)
r.Sub(v, qu)
// s = x2 - q*x1
qx1.Mul(q, x1)
s.Sub(x2, qx1)
// t = y2 - q*y1
qy1.Mul(q, y1)
t.Sub(y2, qy1)
// v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t
v.Set(u)
u.Set(r)
x2.Set(x1)
x1.Set(s)
y2.Set(y1)
y1.Set(t)
// As soon as the remainder is less than the sqrt of n, the
// values of a1 and b1 are known.
if !found && r.Cmp(nSqrt) < 0 {
// When this condition executes ri and ti represent the
// r[i] and t[i] values such that i is the greatest
// index for which r >= sqrt(n). Meanwhile, the current
// r and t values are r[i+1] and t[i+1], respectively.
// a1 = r[i+1], b1 = -t[i+1]
a1.Set(r)
b1.Mul(t, bigMinus1)
found = true
oneMore = true
// Skip to the next iteration so ri and ti are not
// modified.
continue
} else if oneMore {
// When this condition executes ri and ti still
// represent the r[i] and t[i] values while the current
// r and t are r[i+2] and t[i+2], respectively.
// sum1 = r[i]^2 + t[i]^2
rSquared := new(big.Int).Mul(ri, ri)
tSquared := new(big.Int).Mul(ti, ti)
sum1 := new(big.Int).Add(rSquared, tSquared)
// sum2 = r[i+2]^2 + t[i+2]^2
r2Squared := new(big.Int).Mul(r, r)
t2Squared := new(big.Int).Mul(t, t)
sum2 := new(big.Int).Add(r2Squared, t2Squared)
// if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2)
if sum1.Cmp(sum2) <= 0 {
// a2 = r[i], b2 = -t[i]
a2.Set(ri)
b2.Mul(ti, bigMinus1)
} else {
// a2 = r[i+2], b2 = -t[i+2]
a2.Set(r)
b2.Mul(t, bigMinus1)
}
// All done.
break
}
ri.Set(r)
ti.Set(t)
}
return a1, b1, a2, b2
}

View File

@ -1,67 +0,0 @@
// Copyright 2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"compress/zlib"
"encoding/base64"
"encoding/binary"
"io/ioutil"
"strings"
)
//go:generate go run -tags gensecp256k1 genprecomps.go
// loadS256BytePoints decompresses and deserializes the pre-computed byte points
// used to accelerate scalar base multiplication for the secp256k1 curve. This
// approach is used since it allows the compile to use significantly less ram
// and be performed much faster than it is with hard-coding the final in-memory
// data structure. At the same time, it is quite fast to generate the in-memory
// data structure at init time with this approach versus computing the table.
func loadS256BytePoints() error {
// There will be no byte points to load when generating them.
bp := secp256k1BytePoints
if len(bp) == 0 {
return nil
}
// Decompress the pre-computed table used to accelerate scalar base
// multiplication.
decoder := base64.NewDecoder(base64.StdEncoding, strings.NewReader(bp))
r, err := zlib.NewReader(decoder)
if err != nil {
return err
}
serialized, err := ioutil.ReadAll(r)
if err != nil {
return err
}
// Deserialize the precomputed byte points and set the curve to them.
offset := 0
var bytePoints [32][256][3]fieldVal
for byteNum := 0; byteNum < 32; byteNum++ {
// All points in this window.
for i := 0; i < 256; i++ {
px := &bytePoints[byteNum][i][0]
py := &bytePoints[byteNum][i][1]
pz := &bytePoints[byteNum][i][2]
for i := 0; i < 10; i++ {
px.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
offset += 4
}
for i := 0; i < 10; i++ {
py.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
offset += 4
}
for i := 0; i < 10; i++ {
pz.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
offset += 4
}
}
}
secp256k1.bytePoints = &bytePoints
return nil
}

View File

@ -1,72 +0,0 @@
// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"math/big"
)
// PrivateKey wraps an ecdsa.PrivateKey as a convenience mainly for signing
// things with the the private key without having to directly import the ecdsa
// package.
type PrivateKey ecdsa.PrivateKey
// PrivKeyFromBytes returns a private and public key for `curve' based on the
// private key passed as an argument as a byte slice.
func PrivKeyFromBytes(curve elliptic.Curve, pk []byte) (*PrivateKey,
*PublicKey) {
x, y := curve.ScalarBaseMult(pk)
priv := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: curve,
X: x,
Y: y,
},
D: new(big.Int).SetBytes(pk),
}
return (*PrivateKey)(priv), (*PublicKey)(&priv.PublicKey)
}
// NewPrivateKey is a wrapper for ecdsa.GenerateKey that returns a PrivateKey
// instead of the normal ecdsa.PrivateKey.
func NewPrivateKey(curve elliptic.Curve) (*PrivateKey, error) {
key, err := ecdsa.GenerateKey(curve, rand.Reader)
if err != nil {
return nil, err
}
return (*PrivateKey)(key), nil
}
// PubKey returns the PublicKey corresponding to this private key.
func (p *PrivateKey) PubKey() *PublicKey {
return (*PublicKey)(&p.PublicKey)
}
// ToECDSA returns the private key as a *ecdsa.PrivateKey.
func (p *PrivateKey) ToECDSA() *ecdsa.PrivateKey {
return (*ecdsa.PrivateKey)(p)
}
// Sign generates a Schnorr signature for the provided hash (which should be the result
// of hashing a larger message) using the private key. Produced signature
// is deterministic (same message and same key yield the same signature).
func (p *PrivateKey) Sign(hash []byte) (*Signature, error) {
return sign(p, hash)
}
// PrivKeyBytesLen defines the length in bytes of a serialized private key.
const PrivKeyBytesLen = 32
// Serialize returns the private key number d as a big-endian binary-encoded
// number, padded to a length of 32 bytes.
func (p *PrivateKey) Serialize() []byte {
b := make([]byte, 0, PrivKeyBytesLen)
return paddedAppend(PrivKeyBytesLen, b, p.ToECDSA().D.Bytes())
}

View File

@ -1,55 +0,0 @@
// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"bytes"
"testing"
)
func TestPrivKeys(t *testing.T) {
tests := []struct {
name string
key []byte
}{
{
name: "check curve",
key: []byte{
0xea, 0xf0, 0x2c, 0xa3, 0x48, 0xc5, 0x24, 0xe6,
0x39, 0x26, 0x55, 0xba, 0x4d, 0x29, 0x60, 0x3c,
0xd1, 0xa7, 0x34, 0x7d, 0x9d, 0x65, 0xcf, 0xe9,
0x3c, 0xe1, 0xeb, 0xff, 0xdc, 0xa2, 0x26, 0x94,
},
},
}
for _, test := range tests {
priv, pub := PrivKeyFromBytes(S256(), test.key)
_, err := ParsePubKey(pub.SerializeUncompressed(), S256())
if err != nil {
t.Errorf("%s privkey: %v", test.name, err)
continue
}
hash := []byte{0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9}
sig, err := priv.Sign(hash)
if err != nil {
t.Errorf("%s could not sign: %v", test.name, err)
continue
}
if !sig.Verify(hash, pub) {
t.Errorf("%s could not verify: %v", test.name, err)
continue
}
serializedKey := priv.Serialize()
if !bytes.Equal(serializedKey, test.key) {
t.Errorf("%s unexpected serialized bytes - got: %x, "+
"want: %x", test.name, serializedKey, test.key)
}
}
}

View File

@ -1,189 +0,0 @@
// Copyright (c) 2013-2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"crypto/ecdsa"
"github.com/pkg/errors"
"math/big"
)
// These constants define the lengths of serialized public keys.
const (
PubKeyBytesLenCompressed = 33
PubKeyBytesLenUncompressed = 65
PubKeyBytesLenHybrid = 65
)
func isOdd(a *big.Int) bool {
return a.Bit(0) == 1
}
// decompressPoint decompresses a point on the given curve given the X point and
// the solution to use.
func decompressPoint(curve *KoblitzCurve, x *big.Int, ybit bool) (*big.Int, error) {
// TODO: This will probably only work for secp256k1 due to
// optimizations.
// Y = +-sqrt(x^3 + B)
x3 := new(big.Int).Mul(x, x)
x3.Mul(x3, x)
x3.Add(x3, curve.Params().B)
x3.Mod(x3, curve.Params().P)
// Now calculate sqrt mod p of x^3 + B
// This code used to do a full sqrt based on tonelli/shanks,
// but this was replaced by the algorithms referenced in
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
y := new(big.Int).Exp(x3, curve.QPlus1Div4(), curve.Params().P)
// Check that y is a square root of x^3 + B.
y2 := new(big.Int).Mul(y, y)
y2.Mod(y2, curve.Params().P)
if y2.Cmp(x3) != 0 {
return nil, errors.Errorf("invalid square root")
}
// Verify that y-coord has expected parity.
if ybit != isOdd(y) {
y.Sub(curve.Params().P, y)
}
if ybit != isOdd(y) {
return nil, errors.Errorf("ybit doesn't match oddness")
}
return y, nil
}
const (
pubkeyCompressed byte = 0x2 // y_bit + x coord
pubkeyUncompressed byte = 0x4 // x coord + y coord
pubkeyHybrid byte = 0x6 // y_bit + x coord + y coord
)
// IsCompressedPubKey returns true the the passed serialized public key has
// been encoded in compressed format, and false otherwise.
func IsCompressedPubKey(pubKey []byte) bool {
// The public key is only compressed if it is the correct length and
// the format (first byte) is one of the compressed pubkey values.
return len(pubKey) == PubKeyBytesLenCompressed &&
(pubKey[0]&^byte(0x1) == pubkeyCompressed)
}
// ParsePubKey parses a public key for a koblitz curve from a bytestring into a
// ecdsa.Publickey, verifying that it is valid. It supports compressed,
// uncompressed and hybrid signature formats.
func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *PublicKey, err error) {
pubkey := PublicKey{}
pubkey.Curve = curve
if len(pubKeyStr) == 0 {
return nil, errors.New("pubkey string is empty")
}
format := pubKeyStr[0]
ybit := (format & 0x1) == 0x1
format &= ^byte(0x1)
switch len(pubKeyStr) {
case PubKeyBytesLenUncompressed:
if format != pubkeyUncompressed && format != pubkeyHybrid {
return nil, errors.Errorf("invalid magic in pubkey str: "+
"%d", pubKeyStr[0])
}
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
pubkey.Y = new(big.Int).SetBytes(pubKeyStr[33:])
// hybrid keys have extra information, make use of it.
if format == pubkeyHybrid && ybit != isOdd(pubkey.Y) {
return nil, errors.Errorf("ybit doesn't match oddness")
}
case PubKeyBytesLenCompressed:
// format is 0x2 | solution, <X coordinate>
// solution determines which solution of the curve we use.
/// y^2 = x^3 + Curve.B
if format != pubkeyCompressed {
return nil, errors.Errorf("invalid magic in compressed "+
"pubkey string: %d", pubKeyStr[0])
}
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
pubkey.Y, err = decompressPoint(curve, pubkey.X, ybit)
if err != nil {
return nil, err
}
default: // wrong!
return nil, errors.Errorf("invalid pub key length %d",
len(pubKeyStr))
}
if pubkey.X.Cmp(pubkey.Curve.Params().P) >= 0 {
return nil, errors.Errorf("pubkey X parameter is >= to P")
}
if pubkey.Y.Cmp(pubkey.Curve.Params().P) >= 0 {
return nil, errors.Errorf("pubkey Y parameter is >= to P")
}
if !pubkey.Curve.IsOnCurve(pubkey.X, pubkey.Y) {
return nil, errors.Errorf("pubkey isn't on secp256k1 curve")
}
return &pubkey, nil
}
// PublicKey is an ecdsa.PublicKey with additional functions to
// serialize in uncompressed, compressed, and hybrid formats.
type PublicKey ecdsa.PublicKey
// ToECDSA returns the public key as a *ecdsa.PublicKey.
func (p *PublicKey) ToECDSA() *ecdsa.PublicKey {
return (*ecdsa.PublicKey)(p)
}
// SerializeUncompressed serializes a public key in a 65-byte uncompressed
// format.
func (p *PublicKey) SerializeUncompressed() []byte {
b := make([]byte, 0, PubKeyBytesLenUncompressed)
b = append(b, pubkeyUncompressed)
b = paddedAppend(32, b, p.X.Bytes())
return paddedAppend(32, b, p.Y.Bytes())
}
// SerializeCompressed serializes a public key in a 33-byte compressed format.
func (p *PublicKey) SerializeCompressed() []byte {
b := make([]byte, 0, PubKeyBytesLenCompressed)
format := pubkeyCompressed
if isOdd(p.Y) {
format |= 0x1
}
b = append(b, format)
return paddedAppend(32, b, p.X.Bytes())
}
// SerializeHybrid serializes a public key in a 65-byte hybrid format.
func (p *PublicKey) SerializeHybrid() []byte {
b := make([]byte, 0, PubKeyBytesLenHybrid)
format := pubkeyHybrid
if isOdd(p.Y) {
format |= 0x1
}
b = append(b, format)
b = paddedAppend(32, b, p.X.Bytes())
return paddedAppend(32, b, p.Y.Bytes())
}
// IsEqual compares this PublicKey instance to the one passed, returning true if
// both PublicKeys are equivalent. A PublicKey is equivalent to another, if they
// both have the same X and Y coordinate.
func (p *PublicKey) IsEqual(otherPubKey *PublicKey) bool {
return p.X.Cmp(otherPubKey.X) == 0 &&
p.Y.Cmp(otherPubKey.Y) == 0
}
// paddedAppend appends the src byte slice to dst, returning the new slice.
// If the length of the source is smaller than the passed size, leading zero
// bytes are appended to the dst slice before appending src.
func paddedAppend(size uint, dst, src []byte) []byte {
for i := 0; i < int(size)-len(src); i++ {
dst = append(dst, 0)
}
return append(dst, src...)
}

View File

@ -1,294 +0,0 @@
// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"bytes"
"testing"
"github.com/davecgh/go-spew/spew"
)
type pubKeyTest struct {
name string
key []byte
format byte
isValid bool
}
var pubKeyTests = []pubKeyTest{
{
name: "uncompressed ok",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: true,
format: pubkeyUncompressed,
},
{
name: "uncompressed x changed",
key: []byte{0x04, 0x15, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
{
name: "uncompressed y changed",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa4,
},
isValid: false,
},
{
name: "uncompressed claims compressed",
key: []byte{0x03, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
{
name: "uncompressed as hybrid ok",
key: []byte{0x07, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: true,
format: pubkeyHybrid,
},
{
name: "uncompressed as hybrid wrong",
key: []byte{0x06, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
// from tx 0b09c51c51ff762f00fb26217269d2a18e77a4fa87d69b3c363ab4df16543f20
{
name: "compressed ok (ybit = 0)",
key: []byte{0x02, 0xce, 0x0b, 0x14, 0xfb, 0x84, 0x2b, 0x1b,
0xa5, 0x49, 0xfd, 0xd6, 0x75, 0xc9, 0x80, 0x75, 0xf1,
0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21,
0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d,
},
isValid: true,
format: pubkeyCompressed,
},
// from tx fdeb8e72524e8dab0da507ddbaf5f88fe4a933eb10a66bc4745bb0aa11ea393c
{
name: "compressed ok (ybit = 1)",
key: []byte{0x03, 0x26, 0x89, 0xc7, 0xc2, 0xda, 0xb1, 0x33,
0x09, 0xfb, 0x14, 0x3e, 0x0e, 0x8f, 0xe3, 0x96, 0x34,
0x25, 0x21, 0x88, 0x7e, 0x97, 0x66, 0x90, 0xb6, 0xb4,
0x7f, 0x5b, 0x2a, 0x4b, 0x7d, 0x44, 0x8e,
},
isValid: true,
format: pubkeyCompressed,
},
{
name: "compressed claims uncompressed (ybit = 0)",
key: []byte{0x04, 0xce, 0x0b, 0x14, 0xfb, 0x84, 0x2b, 0x1b,
0xa5, 0x49, 0xfd, 0xd6, 0x75, 0xc9, 0x80, 0x75, 0xf1,
0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21,
0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d,
},
isValid: false,
},
{
name: "compressed claims uncompressed (ybit = 1)",
key: []byte{0x05, 0x26, 0x89, 0xc7, 0xc2, 0xda, 0xb1, 0x33,
0x09, 0xfb, 0x14, 0x3e, 0x0e, 0x8f, 0xe3, 0x96, 0x34,
0x25, 0x21, 0x88, 0x7e, 0x97, 0x66, 0x90, 0xb6, 0xb4,
0x7f, 0x5b, 0x2a, 0x4b, 0x7d, 0x44, 0x8e,
},
isValid: false,
},
{
name: "wrong length)",
key: []byte{0x05},
isValid: false,
},
{
name: "X == P",
key: []byte{0x04, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
{
name: "X > P",
key: []byte{0x04, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFD, 0x2F, 0xb2, 0xe0,
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
0xb4, 0x12, 0xa3,
},
isValid: false,
},
{
name: "Y == P",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF,
0xFF, 0xFC, 0x2F,
},
isValid: false,
},
{
name: "Y > P",
key: []byte{0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF,
0xFF, 0xFD, 0x2F,
},
isValid: false,
},
{
name: "hybrid",
key: []byte{0x06, 0x79, 0xbe, 0x66, 0x7e, 0xf9, 0xdc, 0xbb,
0xac, 0x55, 0xa0, 0x62, 0x95, 0xce, 0x87, 0x0b, 0x07,
0x02, 0x9b, 0xfc, 0xdb, 0x2d, 0xce, 0x28, 0xd9, 0x59,
0xf2, 0x81, 0x5b, 0x16, 0xf8, 0x17, 0x98, 0x48, 0x3a,
0xda, 0x77, 0x26, 0xa3, 0xc4, 0x65, 0x5d, 0xa4, 0xfb,
0xfc, 0x0e, 0x11, 0x08, 0xa8, 0xfd, 0x17, 0xb4, 0x48,
0xa6, 0x85, 0x54, 0x19, 0x9c, 0x47, 0xd0, 0x8f, 0xfb,
0x10, 0xd4, 0xb8,
},
format: pubkeyHybrid,
isValid: true,
},
}
func TestPubKeys(t *testing.T) {
for _, test := range pubKeyTests {
pk, err := ParsePubKey(test.key, S256())
if err != nil {
if test.isValid {
t.Errorf("%s pubkey failed when shouldn't %v",
test.name, err)
}
continue
}
if !test.isValid {
t.Errorf("%s counted as valid when it should fail",
test.name)
continue
}
var pkStr []byte
switch test.format {
case pubkeyUncompressed:
pkStr = (*PublicKey)(pk).SerializeUncompressed()
case pubkeyCompressed:
pkStr = (*PublicKey)(pk).SerializeCompressed()
case pubkeyHybrid:
pkStr = (*PublicKey)(pk).SerializeHybrid()
}
if !bytes.Equal(test.key, pkStr) {
t.Errorf("%s pubkey: serialized keys do not match.",
test.name)
spew.Dump(test.key)
spew.Dump(pkStr)
}
}
}
func TestPublicKeyIsEqual(t *testing.T) {
pubKey1, err := ParsePubKey(
[]byte{0x03, 0x26, 0x89, 0xc7, 0xc2, 0xda, 0xb1, 0x33,
0x09, 0xfb, 0x14, 0x3e, 0x0e, 0x8f, 0xe3, 0x96, 0x34,
0x25, 0x21, 0x88, 0x7e, 0x97, 0x66, 0x90, 0xb6, 0xb4,
0x7f, 0x5b, 0x2a, 0x4b, 0x7d, 0x44, 0x8e,
},
S256(),
)
if err != nil {
t.Fatalf("failed to parse raw bytes for pubKey1: %v", err)
}
pubKey2, err := ParsePubKey(
[]byte{0x02, 0xce, 0x0b, 0x14, 0xfb, 0x84, 0x2b, 0x1b,
0xa5, 0x49, 0xfd, 0xd6, 0x75, 0xc9, 0x80, 0x75, 0xf1,
0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21,
0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d,
},
S256(),
)
if err != nil {
t.Fatalf("failed to parse raw bytes for pubKey2: %v", err)
}
if !pubKey1.IsEqual(pubKey1) {
t.Fatalf("value of IsEqual is incorrect, %v is "+
"equal to %v", pubKey1, pubKey1)
}
if pubKey1.IsEqual(pubKey2) {
t.Fatalf("value of IsEqual is incorrect, %v is not "+
"equal to %v", pubKey1, pubKey2)
}
}
func TestIsCompressed(t *testing.T) {
for _, test := range pubKeyTests {
isCompressed := IsCompressedPubKey(test.key)
wantCompressed := (test.format == pubkeyCompressed)
if isCompressed != wantCompressed {
t.Fatalf("%s (%x) pubkey: unexpected compressed result, "+
"got %v, want %v", test.name, test.key,
isCompressed, wantCompressed)
}
}
}

File diff suppressed because one or more lines are too long

View File

@ -1,261 +0,0 @@
// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"bytes"
"crypto/elliptic"
"crypto/hmac"
"crypto/sha256"
"github.com/pkg/errors"
"hash"
"math/big"
)
// Signature is a type representing a Schnorr signature.
type Signature struct {
R *big.Int
S *big.Int
}
var (
// Used in RFC6979 implementation when testing the nonce for correctness
one = big.NewInt(1)
// oneInitializer is used to fill a byte slice with byte 0x01. It is provided
// here to avoid the need to create it multiple times.
oneInitializer = []byte{0x01}
)
// Serialize returns a serialized signature (R and S concatenated).
func (sig *Signature) Serialize() []byte {
return append(bigIntTo32Bytes(sig.R), bigIntTo32Bytes(sig.S)...)
}
// Verify verifies digital signatures. It returns true if the signature
// is valid, false otherwise.
func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool {
return verifySchnorr(pubKey, hash, sig.R, sig.S)
}
// verifySchnorr verifies the schnorr signature of the hash using the pubkey key.
// It returns true if the signature is valid, false otherwise.
func verifySchnorr(pubKey *PublicKey, hash []byte, r *big.Int, s *big.Int) bool {
// This schnorr specification is specific to the secp256k1 curve so if the
// provided curve is not a KoblitizCurve then we'll just return false.
curve, ok := pubKey.Curve.(*KoblitzCurve)
if !ok {
return false
}
// Signature is invalid if s >= order or r >= p.
if s.Cmp(curve.Params().N) >= 0 || r.Cmp(curve.Params().P) >= 0 {
return false
}
// Compute scalar e = Hash(r || compressed(P) || m) mod N
eBytes := sha256.Sum256(append(append(bigIntTo32Bytes(r), pubKey.SerializeCompressed()...), hash...))
e := new(big.Int).SetBytes(eBytes[:])
e.Mod(e, curve.Params().N)
// Negate e
e.Neg(e).Mod(e, curve.Params().N)
// Compute point R = s * G - e * P.
sgx, sgy, sgz := curve.scalarBaseMultJacobian(s.Bytes())
epx, epy, epz := curve.scalarMultJacobian(pubKey.X, pubKey.Y, e.Bytes())
rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
curve.addJacobian(sgx, sgy, sgz, epx, epy, epz, rx, ry, rz)
// Check that R is not infinity
if rz.Equals(new(fieldVal).SetInt(0)) {
return false
}
// Check if R.y is quadratic residue
yz := ry.Mul(rz).Normalize()
b := yz.Bytes()
if big.Jacobi(new(big.Int).SetBytes(b[:]), curve.P) != 1 {
return false
}
// Check R values match
// rx ≠ rz^2 * r mod p
fieldR := new(fieldVal).SetByteSlice(r.Bytes())
return rx.Normalize().Equals(rz.Square().Mul(fieldR).Normalize())
}
// IsEqual compares this Signature instance to the one passed, returning true
// if both Signatures are equivalent. A signature is equivalent to another, if
// they both have the same scalar value for R and S.
func (sig *Signature) IsEqual(otherSig *Signature) bool {
return sig.R.Cmp(otherSig.R) == 0 &&
sig.S.Cmp(otherSig.S) == 0
}
// ParseSignature parses a 64 byte schnorr signature into a Signature type.
func ParseSignature(sigStr []byte) (*Signature, error) {
if len(sigStr) != 64 {
return nil, errors.New("malformed schnorr signature: not 64 bytes")
}
bigR := new(big.Int).SetBytes(sigStr[:32])
bigS := new(big.Int).SetBytes(sigStr[32:64])
return &Signature{
R: bigR,
S: bigS,
}, nil
}
// bigIntTo32Bytes pads a big int bytes with leading zeros if they
// are missing to get the length up to 32 bytes.
func bigIntTo32Bytes(val *big.Int) []byte {
b := val.Bytes()
pad := bytes.Repeat([]byte{0x00}, 32-len(b))
return append(pad, b...)
}
// hashToInt converts a hash value to an integer. There is some disagreement
// about how this is done. [NSA] suggests that this is done in the obvious
// manner, but [SECG] truncates the hash to the bit-length of the curve order
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
// OpenSSL right shifts excess bits from the number if the hash is too large
// and we mirror that too.
// This is borrowed from crypto/ecdsa.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
// sign signs the hash using the schnorr signature algorithm.
func sign(privateKey *PrivateKey, hash []byte) (*Signature, error) {
// The rfc6979 nonce derivation function accepts additional entropy.
// See https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/2019-05-15-schnorr.md#recommended-practices-for-secure-signature-generation
additionalData := []byte{'S', 'c', 'h', 'n', 'o', 'r', 'r', '+', 'S', 'H', 'A', '2', '5', '6', ' ', ' '}
k := nonceRFC6979(privateKey.D, hash, additionalData)
// Compute point R = k * G
rx, ry := privateKey.Curve.ScalarBaseMult(k.Bytes())
// Negate nonce if R.y is not a quadratic residue.
if big.Jacobi(ry, privateKey.Params().P) != 1 {
k = k.Neg(k)
}
// Compute scalar e = Hash(R.x || compressed(P) || m) mod N
eBytes := sha256.Sum256(append(append(bigIntTo32Bytes(rx), privateKey.PubKey().SerializeCompressed()...), hash...))
e := new(big.Int).SetBytes(eBytes[:])
e.Mod(e, privateKey.Params().N)
// Compute scalar s = (k + e * x) mod N
x := new(big.Int).SetBytes(privateKey.Serialize())
s := e.Mul(e, x)
s.Add(s, k)
s.Mod(s, privateKey.Params().N)
return &Signature{
R: rx,
S: s,
}, nil
}
// nonceRFC6979 generates a nonce (`k`) deterministically according to RFC 6979.
// It takes a 32-byte hash as an input and returns 32-byte nonce to be used in the digital signature algorithm.
func nonceRFC6979(privkey *big.Int, hash []byte, additionalData []byte) *big.Int {
// Step A
curve := S256()
q := curve.Params().N
x := privkey
alg := sha256.New
qlen := q.BitLen()
holen := alg().Size()
rolen := (qlen + 7) >> 3
bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...)
// Step B
v := bytes.Repeat(oneInitializer, holen)
// Step C (Go zeroes the all allocated memory)
k := make([]byte, holen)
// Step D
k = mac(alg, k, append(append(append(v, 0x00), bx...), additionalData...))
// Step E
v = mac(alg, k, v)
// Step F
k = mac(alg, k, append(append(append(v, 0x01), bx...), additionalData...))
// Step G
v = mac(alg, k, v)
// Step H
for {
// Step H1
var t []byte
// Step H2
for len(t)*8 < qlen {
v = mac(alg, k, v)
t = append(t, v...)
}
// Step H3
secret := hashToInt(t, curve)
if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 {
return secret
}
k = mac(alg, k, append(v, 0x00))
v = mac(alg, k, v)
}
}
// mac returns an HMAC of the given key and message.
func mac(alg func() hash.Hash, k, m []byte) []byte {
h := hmac.New(alg, k)
h.Write(m)
return h.Sum(nil)
}
// https://tools.ietf.org/html/rfc6979#section-2.3.3
func int2octets(v *big.Int, rolen int) []byte {
out := v.Bytes()
// left pad with zeros if it's too short
if len(out) < rolen {
out2 := make([]byte, rolen)
copy(out2[rolen-len(out):], out)
return out2
}
// drop most significant bytes if it's too long
if len(out) > rolen {
out2 := make([]byte, rolen)
copy(out2, out[len(out)-rolen:])
return out2
}
return out
}
func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte {
// https://tools.ietf.org/html/rfc6979#section-2.3.4
z1 := hashToInt(in, curve)
z2 := new(big.Int).Sub(z1, curve.Params().N)
if z2.Sign() < 0 {
return int2octets(z1, rolen)
}
return int2octets(z2, rolen)
}

View File

@ -1,262 +0,0 @@
// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecc
import (
"bytes"
"crypto/sha256"
"encoding/hex"
"testing"
)
// decodeHex decodes the passed hex string and returns the resulting bytes. It
// panics if an error occurs. This is only used in the tests as a helper since
// the only way it can fail is if there is an error in the test source code.
func decodeHex(hexStr string) []byte {
b, err := hex.DecodeString(hexStr)
if err != nil {
panic("invalid hex string in test source: err " + err.Error() +
", hex: " + hexStr)
}
return b
}
func TestRFC6979(t *testing.T) {
// Test vectors matching Trezor and CoreBitcoin implementations.
// - https://github.com/trezor/trezor-crypto/blob/9fea8f8ab377dc514e40c6fd1f7c89a74c1d8dc6/tests.c#L432-L453
// - https://github.com/oleganza/CoreBitcoin/blob/e93dd71207861b5bf044415db5fa72405e7d8fbc/CoreBitcoin/BTCKey%2BTests.m#L23-L49
tests := []struct {
key string
msg string
nonce string
signature string
}{
{
"cca9fbcc1b41e5a95d369eaa6ddcff73b61a4efaa279cfc6567e8daa39cbaf50",
"sample",
"bbed2b98f40ded8587b0615b8413d2aaf520215f369b098cea4ceec119b3f722",
"e8d6af55a53a1ac260c89aa247cc677a6219132f0d031530c75c22bffde442d894a5edc9cfffa4362f0b9f2af84f4cd13ae67b0b742d18c46eb85dac8eea6171",
},
{
// This signature hits the case when S is higher than halforder.
// If S is not canonicalized (lowered by halforder), this test will fail.
"0000000000000000000000000000000000000000000000000000000000000001",
"Satoshi Nakamoto",
"c2b802cb01789ed38de5cffd81a56374c39b7ee6f31bb36244650141bb3425fe",
"2f78a0720cf85bef9a24aef691fce02002c59381133ee543055d24222e2797cc78531f684122d541bbb4afe536e0b19236ad83e2e97a6277626aa5e0d1428f64",
},
{
"fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140",
"Satoshi Nakamoto",
"b962c5b6537356a8b9362d6a275614df9711dff7b94d803b9ba5b5f2d4d90f8c",
"bebecd554a4c22ad202d074db855af4c974a55a5b9ef5ecf009eff232c806c63b9b37ef1d984feb2aa500777562d66f2ba468fab0491202ede12e76aa69d194a",
},
{
"f8b8af8ce3c7cca5e300d33939540c10d45ce001b8f252bfbc57ba0342904181",
"Alan Turing",
"65e72825561dd93f7a0ab53cdce97d5e57b2235c056e8b8396857425a6a8ff54",
"864487c21bc3a7823a9dbc99fc2a6de67cf7d7cf5f2feb6585319256393ff0f2192c3292df9979a01bf26f96017bc7e5f4a2e01fa5b9e1007af1a19a58f767d0",
},
{
"0000000000000000000000000000000000000000000000000000000000000001",
"All those moments will be lost in time, like tears in rain. Time to die...",
"60eb74b1fbc2db67be649f56246cee8c2225803155c86ff72f29641958de471a",
"66e3a89b2842c05cf57e5315bc2d063b1054979a4f0e5718ec5e0d68bde268296f855a1595aaa0625c822b526226a0e248fc0a1eae6f160cc97a783b8646b755",
},
{
"e91671c46231f833a6406ccbea0e3e392c76c167bac1cb013f6f1013980455c2",
"There is a computer disease that anybody who works with computers knows about. It's a very serious disease and it interferes completely with the work. The trouble with computers is that you 'play' with them!",
"a1b518d7f2c6d9b68672f5e2b66fc872ef67a9b0b422d8b70ce0292017a62f60",
"c5290b3ecadc0ed0d674501ffc880f2f44b2ed829bfd101676f6fb55def15f23236ace4b651a52e9d590f421668e2b1b495c9039d27db848eb3edf1d1eb60d50",
},
}
for i, test := range tests {
privKey, _ := PrivKeyFromBytes(S256(), decodeHex(test.key))
hash := sha256.Sum256([]byte(test.msg))
// Ensure deterministically generated nonce is the expected value.
additionalData := []byte{'S', 'c', 'h', 'n', 'o', 'r', 'r', '+', 'S', 'H', 'A', '2', '5', '6', ' ', ' '}
gotNonce := nonceRFC6979(privKey.D, hash[:], additionalData).Bytes()
wantNonce := decodeHex(test.nonce)
if !bytes.Equal(gotNonce, wantNonce) {
t.Errorf("NonceRFC6979 #%d (%s): Nonce is incorrect: "+
"%x (expected %x)", i, test.msg, gotNonce,
wantNonce)
continue
}
// Ensure deterministically generated signature is the expected value.
gotSig, err := privKey.Sign(hash[:])
if err != nil {
t.Errorf("Sign #%d (%s): unexpected error: %v", i,
test.msg, err)
continue
}
gotSigBytes := gotSig.Serialize()
wantSigBytes := decodeHex(test.signature)
if !bytes.Equal(gotSigBytes, wantSigBytes) {
t.Errorf("Sign #%d (%s): mismatched signature: %x "+
"(expected %x)", i, test.msg, gotSigBytes,
wantSigBytes)
continue
}
}
}
func TestSignatureIsEqual(t *testing.T) {
sig1 := &Signature{
R: fromHex("0082235e21a2300022738dabb8e1bbd9d19cfb1e7ab8c30a23b0afbb8d178abcf3"),
S: fromHex("24bf68e256c534ddfaf966bf908deb944305596f7bdcc38d69acad7f9c868724"),
}
sig2 := &Signature{
R: fromHex("4e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd41"),
S: fromHex("181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d09"),
}
if !sig1.IsEqual(sig1) {
t.Fatalf("value of IsEqual is incorrect, %v is "+
"equal to %v", sig1, sig1)
}
if sig1.IsEqual(sig2) {
t.Fatalf("value of IsEqual is incorrect, %v is not "+
"equal to %v", sig1, sig2)
}
}
func TestSchnorrSignatureVerify(t *testing.T) {
// Test vectors taken from https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr/test-vectors.csv
tests := []struct {
pubKey []byte
message []byte
signature []byte
valid bool
}{
{
decodeHex("0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798"),
decodeHex("0000000000000000000000000000000000000000000000000000000000000000"),
decodeHex("787A848E71043D280C50470E8E1532B2DD5D20EE912A45DBDD2BD1DFBF187EF67031A98831859DC34DFFEEDDA86831842CCD0079E1F92AF177F7F22CC1DCED05"),
true,
},
{
decodeHex("02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659"),
decodeHex("243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89"),
decodeHex("2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD"),
true,
},
{
decodeHex("03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B"),
decodeHex("5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C"),
decodeHex("00DA9B08172A9B6F0466A2DEFD817F2D7AB437E0D253CB5395A963866B3574BE00880371D01766935B92D2AB4CD5C8A2A5837EC57FED7660773A05F0DE142380"),
true,
},
{
decodeHex("03DEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34"),
decodeHex("4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703"),
decodeHex("00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C6302A8DC32E64E86A333F20EF56EAC9BA30B7246D6D25E22ADB8C6BE1AEB08D49D"),
true,
},
{
decodeHex("031B84C5567B126440995D3ED5AABA0565D71E1834604819FF9C17F5E9D5DD078F"),
decodeHex("0000000000000000000000000000000000000000000000000000000000000000"),
decodeHex("52818579ACA59767E3291D91B76B637BEF062083284992F2D95F564CA6CB4E3530B1DA849C8E8304ADC0CFE870660334B3CFC18E825EF1DB34CFAE3DFC5D8187"),
true,
},
{
decodeHex("03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B"),
decodeHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"),
decodeHex("570DD4CA83D4E6317B8EE6BAE83467A1BF419D0767122DE409394414B05080DCE9EE5F237CBD108EABAE1E37759AE47F8E4203DA3532EB28DB860F33D62D49BD"),
true,
},
{
decodeHex("02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659"),
decodeHex("243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89"),
decodeHex("2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1DFA16AEE06609280A19B67A24E1977E4697712B5FD2943914ECD5F730901B4AB7"),
false,
},
{
decodeHex("03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B"),
decodeHex("5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C"),
decodeHex("00DA9B08172A9B6F0466A2DEFD817F2D7AB437E0D253CB5395A963866B3574BED092F9D860F1776A1F7412AD8A1EB50DACCC222BC8C0E26B2056DF2F273EFDEC"),
false,
},
{
decodeHex("0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798"),
decodeHex("0000000000000000000000000000000000000000000000000000000000000000"),
decodeHex("787A848E71043D280C50470E8E1532B2DD5D20EE912A45DBDD2BD1DFBF187EF68FCE5677CE7A623CB20011225797CE7A8DE1DC6CCD4F754A47DA6C600E59543C"),
false,
},
{
decodeHex("03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659"),
decodeHex("243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89"),
decodeHex("2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD"),
false,
},
{
decodeHex("03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659"),
decodeHex("243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89"),
decodeHex("00000000000000000000000000000000000000000000000000000000000000009E9D01AF988B5CEDCE47221BFA9B222721F3FA408915444A4B489021DB55775F"),
false,
},
{
decodeHex("03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659"),
decodeHex("243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89"),
decodeHex("0000000000000000000000000000000000000000000000000000000000000001D37DDF0254351836D84B1BD6A795FD5D523048F298C4214D187FE4892947F728"),
false,
},
{
decodeHex("03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659"),
decodeHex("243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89"),
decodeHex("4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD"),
false,
},
{
decodeHex("03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659"),
decodeHex("243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89"),
decodeHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC2F1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD"),
false,
},
{
decodeHex("03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659"),
decodeHex("243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89"),
decodeHex("2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1DFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141"),
false,
},
}
for i, test := range tests {
pubkey, err := ParsePubKey(test.pubKey, S256())
if err != nil {
t.Fatal(err)
}
sig, err := ParseSignature(test.signature)
if err != nil {
t.Fatal(err)
}
valid := sig.Verify(test.message, pubkey)
if valid != test.valid {
t.Errorf("Schnorr test vector %d didn't produce correct result", i)
}
}
}
func TestDeterministicSchnorrSignatureGen(t *testing.T) {
// Test vector from Bitcoin-ABC
privKeyBytes := decodeHex("12b004fff7f4b69ef8650e767f18f11ede158148b425660723b9f9a66e61f747")
privKey, _ := PrivKeyFromBytes(S256(), privKeyBytes)
h1 := sha256.Sum256([]byte("Very deterministic message"))
h2 := sha256.Sum256(h1[:])
sig, err := privKey.Sign(h2[:])
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(sig.R.Bytes(), decodeHex("2c56731ac2f7a7e7f11518fc7722a166b02438924ca9d8b4d111347b81d07175")) ||
!bytes.Equal(sig.S.Bytes(), decodeHex("71846de67ad3d913a8fdf9d8f3f73161a4c48ae81cb183b214765feb86e255ce")) {
t.Error("Failed to generate deterministic schnorr signature")
}
}

View File

@ -1,43 +0,0 @@
hdkeychain
==========
[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](https://choosealicense.com/licenses/isc/)
[![GoDoc](http://img.shields.io/badge/godoc-reference-blue.svg)](http://godoc.org/github.com/kaspanet/kaspad/util/hdkeychain)
Package hdkeychain provides an API for kaspa hierarchical deterministic
extended keys.
## Feature Overview
- Full BIP0032-compatible implementation
- Single type for private and public extended keys
- Convenient cryptograpically secure seed generation
- Simple creation of master nodes
- Support for multi-layer derivation
- Easy serialization and deserialization for both private and public extended
keys
- Support for custom networks by registering them with dagconfig
- Obtaining the underlying EC pubkeys, EC privkeys, and associated kaspa
addresses ties in seamlessly with existing `ecc` and `util` types which provide
powerful tools for working with them to do things like sign transations and
generate payment scripts
- Uses the `ecc` package which is highly optimized for secp256k1
- Code examples including:
- Generating a cryptographically secure random seed and deriving a
master node from it
- Default HD wallet layout as described by BIP0032
- Audits use case as described by BIP0032
- Comprehensive test coverage including the BIP0032 test vectors
- Benchmarks
## Examples
* [NewMaster Example](http://godoc.org/github.com/kaspanet/kaspad/util/hdkeychain#example-NewMaster)
Demonstrates how to generate a cryptographically random seed then use it to
create a new master node (extended key).
* [Default Wallet Layout Example](http://godoc.org/github.com/kaspanet/kaspad/util/hdkeychain#example-package--DefaultWalletLayout)
Demonstrates the default hierarchical deterministic wallet layout as described
in BIP0032.
* [Audits Use Case Example](http://godoc.org/github.com/kaspanet/kaspad/util/hdkeychain#example-package--Audits)
Demonstrates the audits use case in BIP0032.

View File

@ -1,83 +0,0 @@
// Copyright (c) 2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package hdkeychain_test
import (
"github.com/kaspanet/kaspad/util/hdkeychain"
"testing"
)
// bip0032MasterPriv1 is the master private extended key from the first set of
// test vectors in BIP0032.
const bip0032MasterPriv1 = "xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbP" +
"y6cq3jPPqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi"
// BenchmarkDeriveHardened benchmarks how long it takes to derive a hardened
// child from a master private extended key.
func BenchmarkDeriveHardened(b *testing.B) {
b.StopTimer()
masterKey, err := hdkeychain.NewKeyFromString(bip0032MasterPriv1)
if err != nil {
b.Errorf("Failed to decode master seed: %v", err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
masterKey.Child(hdkeychain.HardenedKeyStart)
}
}
// BenchmarkDeriveNormal benchmarks how long it takes to derive a normal
// (non-hardened) child from a master private extended key.
func BenchmarkDeriveNormal(b *testing.B) {
b.StopTimer()
masterKey, err := hdkeychain.NewKeyFromString(bip0032MasterPriv1)
if err != nil {
b.Errorf("Failed to decode master seed: %v", err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
masterKey.Child(0)
}
}
// BenchmarkPrivToPub benchmarks how long it takes to convert a private extended
// key to a public extended key.
func BenchmarkPrivToPub(b *testing.B) {
b.StopTimer()
masterKey, err := hdkeychain.NewKeyFromString(bip0032MasterPriv1)
if err != nil {
b.Errorf("Failed to decode master seed: %v", err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
masterKey.Neuter()
}
}
// BenchmarkDeserialize benchmarks how long it takes to deserialize a private
// extended key.
func BenchmarkDeserialize(b *testing.B) {
for i := 0; i < b.N; i++ {
hdkeychain.NewKeyFromString(bip0032MasterPriv1)
}
}
// BenchmarkSerialize benchmarks how long it takes to serialize a private
// extended key.
func BenchmarkSerialize(b *testing.B) {
b.StopTimer()
masterKey, err := hdkeychain.NewKeyFromString(bip0032MasterPriv1)
if err != nil {
b.Errorf("Failed to decode master seed: %v", err)
}
b.StartTimer()
for i := 0; i < b.N; i++ {
_ = masterKey.String()
}
}

View File

@ -1,80 +0,0 @@
/*
Package hdkeychain provides an API for kaspa hierarchical deterministic
extended keys (BIP0032).
Overview
The ability to implement hierarchical deterministic wallets depends on the
ability to create and derive hierarchical deterministic extended keys.
At a high level, this package provides support for those hierarchical
deterministic extended keys by providing an ExtendedKey type and supporting
functions. Each extended key can either be a private or public extended key
which itself is capable of deriving a child extended key.
Determining the Extended Key Type
Whether an extended key is a private or public extended key can be determined
with the IsPrivate function.
Transaction Signing Keys and Payment Addresses
In order to create and sign transactions, or provide others with addresses to
send funds to, the underlying key and address material must be accessible. This
package provides the ECPubKey, ECPrivKey, and Address functions for this
purpose.
The Master Node
As previously mentioned, the extended keys are hierarchical meaning they are
used to form a tree. The root of that tree is called the master node and this
package provides the NewMaster function to create it from a cryptographically
random seed. The GenerateSeed function is provided as a convenient way to
create a random seed for use with the NewMaster function.
Deriving Children
Once you have created a tree root (or have deserialized an extended key as
discussed later), the child extended keys can be derived by using the Child
function. The Child function supports deriving both normal (non-hardened) and
hardened child extended keys. In order to derive a hardened extended key, use
the HardenedKeyStart constant + the hardened key number as the index to the
Child function. This provides the ability to cascade the keys into a tree and
hence generate the hierarchical deterministic key chains.
Normal vs Hardened Child Extended Keys
A private extended key can be used to derive both hardened and non-hardened
(normal) child private and public extended keys. A public extended key can only
be used to derive non-hardened child public extended keys. As enumerated in
BIP0032 "knowledge of the extended public key plus any non-hardened private key
descending from it is equivalent to knowing the extended private key (and thus
every private and public key descending from it). This means that extended
public keys must be treated more carefully than regular public keys. It is also
the reason for the existence of hardened keys, and why they are used for the
account level in the tree. This way, a leak of an account-specific (or below)
private key never risks compromising the master or other accounts."
Neutering a Private Extended Key
A private extended key can be converted to a new instance of the corresponding
public extended key with the Neuter function. The original extended key is not
modified. A public extended key is still capable of deriving non-hardened child
public extended keys.
Serializing and Deserializing Extended Keys
Extended keys are serialized and deserialized with the String and
NewKeyFromString functions. The serialized key is a Base58-encoded string which
looks like the following:
public key: xpub68Gmy5EdvgibQVfPdqkBBCHxA5htiqg55crXYuXoQRKfDBFA1WEjWgP6LHhwBZeNK1VTsfTFUHCdrfp1bgwQ9xv5ski8PX9rL2dZXvgGDnw
private key: xprv9uHRZZhk6KAJC1avXpDAp4MDc3sQKNxDiPvvkX8Br5ngLNv1TxvUxt4cV1rGL5hj6KCesnDYUhd7oWgT11eZG7XnxHrnYeSvkzY7d2bhkJ7
Network
Extended keys are much like normal kaspa addresses in that they have version
bytes which tie them to a specific network. The SetNet and IsForNet functions
are provided to set and determinine which network an extended key is associated
with.
*/
package hdkeychain

View File

@ -1,182 +0,0 @@
// Copyright (c) 2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package hdkeychain_test
import (
"fmt"
"github.com/kaspanet/kaspad/util"
"github.com/kaspanet/kaspad/util/hdkeychain"
)
// This example demonstrates how to generate a cryptographically random seed
// then use it to create a new master node (extended key).
func ExampleNewMaster() {
// Generate a random seed at the recommended length.
seed, err := hdkeychain.GenerateSeed(hdkeychain.RecommendedSeedLen)
if err != nil {
fmt.Println(err)
return
}
// Generate a new master node using the seed.
key, err := hdkeychain.NewMaster(seed, hdkeychain.HDKeyPairMainnet.PrivateKeyID)
if err != nil {
fmt.Println(err)
return
}
// Show that the generated master node extended key is private.
fmt.Println("Private Extended Key?:", key.IsPrivate())
// Output:
// Private Extended Key?: true
}
// This example demonstrates the default hierarchical deterministic wallet
// layout as described in BIP0032.
func Example_defaultWalletLayout() {
// The default wallet layout described in BIP0032 is:
//
// Each account is composed of two keypair chains: an internal and an
// external one. The external keychain is used to generate new public
// addresses, while the internal keychain is used for all other
// operations (change addresses, generation addresses, ..., anything
// that doesn't need to be communicated).
//
// * m/iH/0/k
// corresponds to the k'th keypair of the external chain of account
// number i of the HDW derived from master m.
// * m/iH/1/k
// corresponds to the k'th keypair of the internal chain of account
// number i of the HDW derived from master m.
// Ordinarily this would either be read from some encrypted source
// and be decrypted or generated as the NewMaster example shows, but
// for the purposes of this example, the private extended key for the
// master node is being hard coded here.
master := "xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jP" +
"PqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi"
// Start by getting an extended key instance for the master node.
// This gives the path:
// m
masterKey, err := hdkeychain.NewKeyFromString(master)
if err != nil {
fmt.Println(err)
return
}
// Derive the extended key for account 0. This gives the path:
// m/0H
acct0, err := masterKey.Child(hdkeychain.HardenedKeyStart + 0)
if err != nil {
fmt.Println(err)
return
}
// Derive the extended key for the account 0 external chain. This
// gives the path:
// m/0H/0
acct0Ext, err := acct0.Child(0)
if err != nil {
fmt.Println(err)
return
}
// Derive the extended key for the account 0 internal chain. This gives
// the path:
// m/0H/1
acct0Int, err := acct0.Child(1)
if err != nil {
fmt.Println(err)
return
}
// At this point, acct0Ext and acct0Int are ready to derive the keys for
// the external and internal wallet chains.
// Derive the 10th extended key for the account 0 external chain. This
// gives the path:
// m/0H/0/10
acct0Ext10, err := acct0Ext.Child(10)
if err != nil {
fmt.Println(err)
return
}
// Derive the 1st extended key for the account 0 internal chain. This
// gives the path:
// m/0H/1/0
acct0Int0, err := acct0Int.Child(0)
if err != nil {
fmt.Println(err)
return
}
// Get and show the address associated with the extended keys for the
// main kaspa network.
acct0ExtAddr, err := acct0Ext10.Address(util.Bech32PrefixKaspa)
if err != nil {
fmt.Println(err)
return
}
acct0IntAddr, err := acct0Int0.Address(util.Bech32PrefixKaspa)
if err != nil {
fmt.Println(err)
return
}
fmt.Println("Account 0 External Address 10:", acct0ExtAddr)
fmt.Println("Account 0 Internal Address 0:", acct0IntAddr)
// Output:
// Account 0 External Address 10: kaspa:qz6wkeydwnmhsf0w9ac4rwhnx8jmlqsp9y9hv6hmlh
// Account 0 Internal Address 0: kaspa:qzak20c4paxssre0a2zvgk8e0r22p06j9srtald0ta
}
// This example demonstrates the audits use case in BIP0032.
func Example_audits() {
// The audits use case described in BIP0032 is:
//
// In case an auditor needs full access to the list of incoming and
// outgoing payments, one can share all account public extended keys.
// This will allow the auditor to see all transactions from and to the
// wallet, in all accounts, but not a single secret key.
//
// * N(m/*)
// corresponds to the neutered master extended key (also called
// the master public extended key)
// Ordinarily this would either be read from some encrypted source
// and be decrypted or generated as the NewMaster example shows, but
// for the purposes of this example, the private extended key for the
// master node is being hard coded here.
master := "xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jP" +
"PqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi"
// Start by getting an extended key instance for the master node.
// This gives the path:
// m
masterKey, err := hdkeychain.NewKeyFromString(master)
if err != nil {
fmt.Println(err)
return
}
// Neuter the master key to generate a master public extended key. This
// gives the path:
// N(m/*)
masterPubKey, err := masterKey.Neuter()
if err != nil {
fmt.Println(err)
return
}
// Share the master public extended key with the auditor.
fmt.Println("Audit key N(m/*):", masterPubKey)
// Output:
// Audit key N(m/*): xpub661MyMwAqRbcFtXgS5sYJABqqG9YLmC4Q1Rdap9gSE8NqtwybGhePY2gZ29ESFjqJoCu1Rupje8YtGqsefD265TMg7usUDFdp6W1EGMcet8
}

View File

@ -1,644 +0,0 @@
// Copyright (c) 2014-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package hdkeychain
// References:
// [BIP32]: BIP0032 - Hierarchical Deterministic Wallets
// https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
import (
"bytes"
"crypto/hmac"
"crypto/rand"
"crypto/sha512"
"encoding/binary"
"github.com/pkg/errors"
"math/big"
"github.com/kaspanet/kaspad/ecc"
"github.com/kaspanet/kaspad/util"
"github.com/kaspanet/kaspad/util/base58"
"github.com/kaspanet/kaspad/util/daghash"
)
const (
// RecommendedSeedLen is the recommended length in bytes for a seed
// to a master node.
RecommendedSeedLen = 32 // 256 bits
// HardenedKeyStart is the index at which a hardended key starts. Each
// extended key has 2^31 normal child keys and 2^31 hardned child keys.
// Thus the range for normal child keys is [0, 2^31 - 1] and the range
// for hardened child keys is [2^31, 2^32 - 1].
HardenedKeyStart = 0x80000000 // 2^31
// MinSeedBytes is the minimum number of bytes allowed for a seed to
// a master node.
MinSeedBytes = 16 // 128 bits
// MaxSeedBytes is the maximum number of bytes allowed for a seed to
// a master node.
MaxSeedBytes = 64 // 512 bits
// serializedKeyLen is the length of a serialized public or private
// extended key. It consists of 4 bytes version, 1 byte depth, 4 bytes
// fingerprint, 4 bytes child number, 32 bytes chain code, and 33 bytes
// public/private key data.
serializedKeyLen = 4 + 1 + 4 + 4 + 32 + 33 // 78 bytes
// maxUint8 is the max positive integer which can be serialized in a uint8
maxUint8 = 1<<8 - 1
)
var (
// ErrDeriveHardFromPublic describes an error in which the caller
// attempted to derive a hardened extended key from a public key.
ErrDeriveHardFromPublic = errors.New("cannot derive a hardened key " +
"from a public key")
// ErrDeriveBeyondMaxDepth describes an error in which the caller
// has attempted to derive more than 255 keys from a root key.
ErrDeriveBeyondMaxDepth = errors.New("cannot derive a key with more than " +
"255 indices in its path")
// ErrNotPrivExtKey describes an error in which the caller attempted
// to extract a private key from a public extended key.
ErrNotPrivExtKey = errors.New("unable to create private keys from a " +
"public extended key")
// ErrInvalidChild describes an error in which the child at a specific
// index is invalid due to the derived key falling outside of the valid
// range for secp256k1 private keys. This error indicates the caller
// should simply ignore the invalid child extended key at this index and
// increment to the next index.
ErrInvalidChild = errors.New("the extended key at this index is invalid")
// ErrUnusableSeed describes an error in which the provided seed is not
// usable due to the derived key falling outside of the valid range for
// secp256k1 private keys. This error indicates the caller must choose
// another seed.
ErrUnusableSeed = errors.New("unusable seed")
// ErrInvalidSeedLen describes an error in which the provided seed or
// seed length is not in the allowed range.
ErrInvalidSeedLen = errors.Errorf("seed length must be between %d and %d "+
"bits", MinSeedBytes*8, MaxSeedBytes*8)
// ErrBadChecksum describes an error in which the checksum encoded with
// a serialized extended key does not match the calculated value.
ErrBadChecksum = errors.New("bad extended key checksum")
// ErrInvalidKeyLen describes an error in which the provided serialized
// key is not the expected length.
ErrInvalidKeyLen = errors.New("the provided serialized extended key " +
"length is invalid")
// ErrUnknownHDKeyID describes an error where the provided id which
// is intended to identify the network for a hierarchical deterministic
// private extended key is not registered.
ErrUnknownHDKeyID = errors.New("unknown hd private extended key bytes")
)
// masterKey is the master key used along with a random seed used to generate
// the master node in the hierarchical tree.
var masterKey = []byte("Kaspa seed")
var hdPrivToPubKeyIDs = make(map[[4]byte][]byte)
// ExtendedKey houses all the information needed to support a hierarchical
// deterministic extended key. See the package overview documentation for
// more details on how to use extended keys.
type ExtendedKey struct {
key []byte // This will be the pubkey for extended pub keys
pubKey []byte // This will only be set for extended priv keys
chainCode []byte
depth uint8
parentFP []byte
childNum uint32
version []byte
isPrivate bool
}
// NewExtendedKey returns a new instance of an extended key with the given
// fields. No error checking is performed here as it's only intended to be a
// convenience method used to create a populated struct. This function should
// only by used by applications that need to create custom ExtendedKeys. All
// other applications should just use NewMaster, Child, or Neuter.
func NewExtendedKey(version, key, chainCode, parentFP []byte, depth uint8,
childNum uint32, isPrivate bool) *ExtendedKey {
// NOTE: The pubKey field is intentionally left nil so it is only
// computed and memoized as required.
return &ExtendedKey{
key: key,
chainCode: chainCode,
depth: depth,
parentFP: parentFP,
childNum: childNum,
version: version,
isPrivate: isPrivate,
}
}
// pubKeyBytes returns bytes for the serialized compressed public key associated
// with this extended key in an efficient manner including memoization as
// necessary.
//
// When the extended key is already a public key, the key is simply returned as
// is since it's already in the correct form. However, when the extended key is
// a private key, the public key will be calculated and memoized so future
// accesses can simply return the cached result.
func (k *ExtendedKey) pubKeyBytes() []byte {
// Just return the key if it's already an extended public key.
if !k.isPrivate {
return k.key
}
// This is a private extended key, so calculate and memoize the public
// key if needed.
if len(k.pubKey) == 0 {
pkx, pky := ecc.S256().ScalarBaseMult(k.key)
pubKey := ecc.PublicKey{Curve: ecc.S256(), X: pkx, Y: pky}
k.pubKey = pubKey.SerializeCompressed()
}
return k.pubKey
}
// IsPrivate returns whether or not the extended key is a private extended key.
//
// A private extended key can be used to derive both hardened and non-hardened
// child private and public extended keys. A public extended key can only be
// used to derive non-hardened child public extended keys.
func (k *ExtendedKey) IsPrivate() bool {
return k.isPrivate
}
// Depth returns the current derivation level with respect to the root.
//
// The root key has depth zero, and the field has a maximum of 255 due to
// how depth is serialized.
func (k *ExtendedKey) Depth() uint8 {
return k.depth
}
// ParentFingerprint returns a fingerprint of the parent extended key from which
// this one was derived.
func (k *ExtendedKey) ParentFingerprint() uint32 {
return binary.BigEndian.Uint32(k.parentFP)
}
// Child returns a derived child extended key at the given index. When this
// extended key is a private extended key (as determined by the IsPrivate
// function), a private extended key will be derived. Otherwise, the derived
// extended key will be also be a public extended key.
//
// When the index is greater to or equal than the HardenedKeyStart constant, the
// derived extended key will be a hardened extended key. It is only possible to
// derive a hardended extended key from a private extended key. Consequently,
// this function will return ErrDeriveHardFromPublic if a hardened child
// extended key is requested from a public extended key.
//
// A hardened extended key is useful since, as previously mentioned, it requires
// a parent private extended key to derive. In other words, normal child
// extended public keys can be derived from a parent public extended key (no
// knowledge of the parent private key) whereas hardened extended keys may not
// be.
//
// NOTE: There is an extremely small chance (< 1 in 2^127) the specific child
// index does not derive to a usable child. The ErrInvalidChild error will be
// returned if this should occur, and the caller is expected to ignore the
// invalid child and simply increment to the next index.
func (k *ExtendedKey) Child(i uint32) (*ExtendedKey, error) {
// Prevent derivation of children beyond the max allowed depth.
if k.depth == maxUint8 {
return nil, ErrDeriveBeyondMaxDepth
}
// There are four scenarios that could happen here:
// 1) Private extended key -> Hardened child private extended key
// 2) Private extended key -> Non-hardened child private extended key
// 3) Public extended key -> Non-hardened child public extended key
// 4) Public extended key -> Hardened child public extended key (INVALID!)
// Case #4 is invalid, so error out early.
// A hardened child extended key may not be created from a public
// extended key.
isChildHardened := i >= HardenedKeyStart
if !k.isPrivate && isChildHardened {
return nil, ErrDeriveHardFromPublic
}
// The data used to derive the child key depends on whether or not the
// child is hardened per [BIP32].
//
// For hardened children:
// 0x00 || ser256(parentKey) || ser32(i)
//
// For normal children:
// serP(parentPubKey) || ser32(i)
keyLen := 33
data := make([]byte, keyLen+4)
if isChildHardened {
// Case #1.
// When the child is a hardened child, the key is known to be a
// private key due to the above early return. Pad it with a
// leading zero as required by [BIP32] for deriving the child.
copy(data[1:], k.key)
} else {
// Case #2 or #3.
// This is either a public or private extended key, but in
// either case, the data which is used to derive the child key
// starts with the secp256k1 compressed public key bytes.
copy(data, k.pubKeyBytes())
}
binary.BigEndian.PutUint32(data[keyLen:], i)
// Take the HMAC-SHA512 of the current key's chain code and the derived
// data:
// I = HMAC-SHA512(Key = chainCode, Data = data)
hmac512 := hmac.New(sha512.New, k.chainCode)
hmac512.Write(data)
ilr := hmac512.Sum(nil)
// Split "I" into two 32-byte sequences Il and Ir where:
// Il = intermediate key used to derive the child
// Ir = child chain code
il := ilr[:len(ilr)/2]
childChainCode := ilr[len(ilr)/2:]
// Both derived public or private keys rely on treating the left 32-byte
// sequence calculated above (Il) as a 256-bit integer that must be
// within the valid range for a secp256k1 private key. There is a small
// chance (< 1 in 2^127) this condition will not hold, and in that case,
// a child extended key can't be created for this index and the caller
// should simply increment to the next index.
ilNum := new(big.Int).SetBytes(il)
if ilNum.Cmp(ecc.S256().N) >= 0 || ilNum.Sign() == 0 {
return nil, ErrInvalidChild
}
// The algorithm used to derive the child key depends on whether or not
// a private or public child is being derived.
//
// For private children:
// childKey = parse256(Il) + parentKey
//
// For public children:
// childKey = serP(point(parse256(Il)) + parentKey)
var isPrivate bool
var childKey []byte
if k.isPrivate {
// Case #1 or #2.
// Add the parent private key to the intermediate private key to
// derive the final child key.
//
// childKey = parse256(Il) + parenKey
keyNum := new(big.Int).SetBytes(k.key)
ilNum.Add(ilNum, keyNum)
ilNum.Mod(ilNum, ecc.S256().N)
childKey = ilNum.Bytes()
isPrivate = true
} else {
// Case #3.
// Calculate the corresponding intermediate public key for
// intermediate private key.
ilx, ily := ecc.S256().ScalarBaseMult(il)
if ilx.Sign() == 0 || ily.Sign() == 0 {
return nil, ErrInvalidChild
}
// Convert the serialized compressed parent public key into X
// and Y coordinates so it can be added to the intermediate
// public key.
pubKey, err := ecc.ParsePubKey(k.key, ecc.S256())
if err != nil {
return nil, err
}
// Add the intermediate public key to the parent public key to
// derive the final child key.
//
// childKey = serP(point(parse256(Il)) + parentKey)
childX, childY := ecc.S256().Add(ilx, ily, pubKey.X, pubKey.Y)
pk := ecc.PublicKey{Curve: ecc.S256(), X: childX, Y: childY}
childKey = pk.SerializeCompressed()
}
// The fingerprint of the parent for the derived child is the first 4
// bytes of the RIPEMD160(SHA256(parentPubKey)).
parentFP := util.Hash160(k.pubKeyBytes())[:4]
return NewExtendedKey(k.version, childKey, childChainCode, parentFP,
k.depth+1, i, isPrivate), nil
}
// Neuter returns a new extended public key from this extended private key. The
// same extended key will be returned unaltered if it is already an extended
// public key.
//
// As the name implies, an extended public key does not have access to the
// private key, so it is not capable of signing transactions or deriving
// child extended private keys. However, it is capable of deriving further
// child extended public keys.
func (k *ExtendedKey) Neuter() (*ExtendedKey, error) {
// Already an extended public key.
if !k.isPrivate {
return k, nil
}
// Get the associated public extended key version bytes.
version, err := HDPrivateKeyToPublicKeyID(k.version)
if err != nil {
return nil, err
}
// Convert it to an extended public key. The key for the new extended
// key will simply be the pubkey of the current extended private key.
//
// This is the function N((k,c)) -> (K, c) from [BIP32].
return NewExtendedKey(version, k.pubKeyBytes(), k.chainCode, k.parentFP,
k.depth, k.childNum, false), nil
}
// HDKeyIDPair represents a pair of public and private key IDs
type HDKeyIDPair struct {
PrivateKeyID [4]byte
PublicKeyID [4]byte
}
// HDKeyPairs for all kinds of nets
var (
HDKeyPairMainnet = HDKeyIDPair{
PrivateKeyID: [4]byte{0x04, 0x88, 0xad, 0xe4}, // starts with xprv
PublicKeyID: [4]byte{0x04, 0x88, 0xb2, 0x1e}, // starts with xpub
}
HDKeyPairTestnet = HDKeyIDPair{
PrivateKeyID: [4]byte{0x04, 0x35, 0x83, 0x94}, // starts with tprv
PublicKeyID: [4]byte{0x04, 0x35, 0x87, 0xcf}, // starts with tpub
}
HDKeyPairRegressionNet = HDKeyIDPair{
PrivateKeyID: [4]byte{0x04, 0x35, 0x83, 0x94}, // starts with tprv
PublicKeyID: [4]byte{0x04, 0x35, 0x87, 0xcf}, // starts with tpub
}
HDKeyPairSimnet = HDKeyIDPair{
PrivateKeyID: [4]byte{0x04, 0x20, 0xb9, 0x00}, // starts with sprv
PublicKeyID: [4]byte{0x04, 0x20, 0xbd, 0x3a}, // starts with spub
}
HDKeyPairDevnet = HDKeyIDPair{
PrivateKeyID: [4]byte{0x04, 0x88, 0xad, 0xe4}, // starts with xprv
PublicKeyID: [4]byte{0x04, 0x88, 0xb2, 0x1e}, // starts with xpub
}
)
// RegisterHDKeyIDPair registers an HDKeyIDPair in the private to public key map
func RegisterHDKeyIDPair(hdKeyIDPair HDKeyIDPair) {
hdPrivToPubKeyIDs[hdKeyIDPair.PrivateKeyID] = hdKeyIDPair.PublicKeyID[:]
}
// HDPrivateKeyToPublicKeyID accepts a private hierarchical deterministic
// extended key id and returns the associated public key id. When the provided
// id is not registered, the ErrUnknownHDKeyID error will be returned.
func HDPrivateKeyToPublicKeyID(id []byte) ([]byte, error) {
if len(id) != 4 {
return nil, ErrUnknownHDKeyID
}
var key [4]byte
copy(key[:], id)
pubBytes, ok := hdPrivToPubKeyIDs[key]
if !ok {
return nil, ErrUnknownHDKeyID
}
return pubBytes, nil
}
// ECPubKey converts the extended key to a ecc public key and returns it.
func (k *ExtendedKey) ECPubKey() (*ecc.PublicKey, error) {
return ecc.ParsePubKey(k.pubKeyBytes(), ecc.S256())
}
// ECPrivKey converts the extended key to a ecc private key and returns it.
// As you might imagine this is only possible if the extended key is a private
// extended key (as determined by the IsPrivate function). The ErrNotPrivExtKey
// error will be returned if this function is called on a public extended key.
func (k *ExtendedKey) ECPrivKey() (*ecc.PrivateKey, error) {
if !k.isPrivate {
return nil, ErrNotPrivExtKey
}
privKey, _ := ecc.PrivKeyFromBytes(ecc.S256(), k.key)
return privKey, nil
}
// Address converts the extended key to a standard kaspa pay-to-pubkey-hash
// address for the passed network.
func (k *ExtendedKey) Address(prefix util.Bech32Prefix) (*util.AddressPubKeyHash, error) {
pkHash := util.Hash160(k.pubKeyBytes())
return util.NewAddressPubKeyHash(pkHash, prefix)
}
// paddedAppend appends the src byte slice to dst, returning the new slice.
// If the length of the source is smaller than the passed size, leading zero
// bytes are appended to the dst slice before appending src.
func paddedAppend(size uint, dst, src []byte) []byte {
for i := 0; i < int(size)-len(src); i++ {
dst = append(dst, 0)
}
return append(dst, src...)
}
// String returns the extended key as a human-readable base58-encoded string.
func (k *ExtendedKey) String() string {
if len(k.key) == 0 {
return "zeroed extended key"
}
var childNumBytes [4]byte
binary.BigEndian.PutUint32(childNumBytes[:], k.childNum)
// The serialized format is:
// version (4) || depth (1) || parent fingerprint (4)) ||
// child num (4) || chain code (32) || key data (33) || checksum (4)
serializedBytes := make([]byte, 0, serializedKeyLen+4)
serializedBytes = append(serializedBytes, k.version...)
serializedBytes = append(serializedBytes, k.depth)
serializedBytes = append(serializedBytes, k.parentFP...)
serializedBytes = append(serializedBytes, childNumBytes[:]...)
serializedBytes = append(serializedBytes, k.chainCode...)
if k.isPrivate {
serializedBytes = append(serializedBytes, 0x00)
serializedBytes = paddedAppend(32, serializedBytes, k.key)
} else {
serializedBytes = append(serializedBytes, k.pubKeyBytes()...)
}
checkSum := daghash.DoubleHashB(serializedBytes)[:4]
serializedBytes = append(serializedBytes, checkSum...)
return base58.Encode(serializedBytes)
}
// IsForNet returns whether or not the extended key is associated with the
// passed network keyIDs.
func (k *ExtendedKey) IsForNet(hdKeyIDPair HDKeyIDPair) bool {
return bytes.Equal(k.version, hdKeyIDPair.PrivateKeyID[:]) ||
bytes.Equal(k.version, hdKeyIDPair.PublicKeyID[:])
}
// SetNet associates the extended key, and any child keys yet to be derived from
// it, with the passed key IDs.
func (k *ExtendedKey) SetNet(hdKeyIDPair HDKeyIDPair) {
if k.isPrivate {
k.version = hdKeyIDPair.PrivateKeyID[:]
} else {
k.version = hdKeyIDPair.PublicKeyID[:]
}
}
// zero sets all bytes in the passed slice to zero. This is used to
// explicitly clear private key material from memory.
func zero(b []byte) {
lenb := len(b)
for i := 0; i < lenb; i++ {
b[i] = 0
}
}
// Zero manually clears all fields and bytes in the extended key. This can be
// used to explicitly clear key material from memory for enhanced security
// against memory scraping. This function only clears this particular key and
// not any children that have already been derived.
func (k *ExtendedKey) Zero() {
zero(k.key)
zero(k.pubKey)
zero(k.chainCode)
zero(k.parentFP)
k.version = nil
k.key = nil
k.depth = 0
k.childNum = 0
k.isPrivate = false
}
// NewMaster creates a new master node for use in creating a hierarchical
// deterministic key chain. The seed must be between 128 and 512 bits and
// should be generated by a cryptographically secure random generation source.
//
// NOTE: There is an extremely small chance (< 1 in 2^127) the provided seed
// will derive to an unusable secret key. The ErrUnusable error will be
// returned if this should occur, so the caller must check for it and generate a
// new seed accordingly.
func NewMaster(seed []byte, hdPrivateKeyID [4]byte) (*ExtendedKey, error) {
// Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes].
if len(seed) < MinSeedBytes || len(seed) > MaxSeedBytes {
return nil, ErrInvalidSeedLen
}
// First take the HMAC-SHA512 of the master key and the seed data:
// I = HMAC-SHA512(Key = "Kaspa seed", Data = S)
hmac512 := hmac.New(sha512.New, masterKey)
hmac512.Write(seed)
lr := hmac512.Sum(nil)
// Split "I" into two 32-byte sequences Il and Ir where:
// Il = master secret key
// Ir = master chain code
secretKey := lr[:len(lr)/2]
chainCode := lr[len(lr)/2:]
// Ensure the key in usable.
secretKeyNum := new(big.Int).SetBytes(secretKey)
if secretKeyNum.Cmp(ecc.S256().N) >= 0 || secretKeyNum.Sign() == 0 {
return nil, ErrUnusableSeed
}
parentFP := []byte{0x00, 0x00, 0x00, 0x00}
return NewExtendedKey(hdPrivateKeyID[:], secretKey, chainCode,
parentFP, 0, 0, true), nil
}
// NewKeyFromString returns a new extended key instance from a base58-encoded
// extended key.
func NewKeyFromString(key string) (*ExtendedKey, error) {
// The base58-decoded extended key must consist of a serialized payload
// plus an additional 4 bytes for the checksum.
decoded := base58.Decode(key)
if len(decoded) != serializedKeyLen+4 {
return nil, ErrInvalidKeyLen
}
// The serialized format is:
// version (4) || depth (1) || parent fingerprint (4)) ||
// child num (4) || chain code (32) || key data (33) || checksum (4)
// Split the payload and checksum up and ensure the checksum matches.
payload := decoded[:len(decoded)-4]
checkSum := decoded[len(decoded)-4:]
expectedCheckSum := daghash.DoubleHashB(payload)[:4]
if !bytes.Equal(checkSum, expectedCheckSum) {
return nil, ErrBadChecksum
}
// Deserialize each of the payload fields.
version := payload[:4]
depth := payload[4:5][0]
parentFP := payload[5:9]
childNum := binary.BigEndian.Uint32(payload[9:13])
chainCode := payload[13:45]
keyData := payload[45:78]
// The key data is a private key if it starts with 0x00. Serialized
// compressed pubkeys either start with 0x02 or 0x03.
isPrivate := keyData[0] == 0x00
if isPrivate {
// Ensure the private key is valid. It must be within the range
// of the order of the secp256k1 curve and not be 0.
keyData = keyData[1:]
keyNum := new(big.Int).SetBytes(keyData)
if keyNum.Cmp(ecc.S256().N) >= 0 || keyNum.Sign() == 0 {
return nil, ErrUnusableSeed
}
} else {
// Ensure the public key parses correctly and is actually on the
// secp256k1 curve.
_, err := ecc.ParsePubKey(keyData, ecc.S256())
if err != nil {
return nil, err
}
}
return NewExtendedKey(version, keyData, chainCode, parentFP, depth,
childNum, isPrivate), nil
}
// GenerateSeed returns a cryptographically secure random seed that can be used
// as the input for the NewMaster function to generate a new master node.
//
// The length is in bytes and it must be between 16 and 64 (128 to 512 bits).
// The recommended length is 32 (256 bits) as defined by the RecommendedSeedLen
// constant.
func GenerateSeed(length uint8) ([]byte, error) {
// Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes].
if length < MinSeedBytes || length > MaxSeedBytes {
return nil, ErrInvalidSeedLen
}
buf := make([]byte, length)
_, err := rand.Read(buf)
if err != nil {
return nil, err
}
return buf, nil
}
func init() {
// Register all default keyPairIDs when the package is initialized.
RegisterHDKeyIDPair(HDKeyPairMainnet)
RegisterHDKeyIDPair(HDKeyPairTestnet)
RegisterHDKeyIDPair(HDKeyPairRegressionNet)
RegisterHDKeyIDPair(HDKeyPairSimnet)
RegisterHDKeyIDPair(HDKeyPairDevnet)
}

File diff suppressed because it is too large Load Diff