kaspad/blockdag/difficulty.go
Evgeny Khirin 0a30837aac [NOD-56] Lower mining difficulty as preparation for devnet (#223)
* [NOD-56] Created devnet

* [NOD-56] Fixed tests

* [NOD-56] Fixed go vet errors

* [NOD-56] Added TestSolveGenesisBlock function

* [NOD-56] Created command line tool for solving genesis blocks
2019-03-24 10:30:52 +02:00

172 lines
6.5 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockdag
import (
"math/big"
"time"
"github.com/daglabs/btcd/util"
)
// calcEasiestDifficulty calculates the easiest possible difficulty that a block
// can have given starting difficulty bits and a duration. It is mainly used to
// verify that claimed proof of work by a block is sane as compared to a
// known good checkpoint.
func (dag *BlockDAG) calcEasiestDifficulty(bits uint32, duration time.Duration) uint32 {
// Convert types used in the calculations below.
durationVal := int64(duration / time.Second)
adjustmentFactor := big.NewInt(dag.dagParams.RetargetAdjustmentFactor)
// The test network rules allow minimum difficulty blocks after more
// than twice the desired amount of time needed to generate a block has
// elapsed.
if dag.dagParams.ReduceMinDifficulty {
reductionTime := int64(dag.dagParams.MinDiffReductionTime /
time.Second)
if durationVal > reductionTime {
return dag.dagParams.PowLimitBits
}
}
// Since easier difficulty equates to higher numbers, the easiest
// difficulty for a given duration is the largest value possible given
// the number of retargets for the duration and starting difficulty
// multiplied by the max adjustment factor.
newTarget := util.CompactToBig(bits)
for durationVal > 0 && newTarget.Cmp(dag.dagParams.PowLimit) < 0 {
newTarget.Mul(newTarget, adjustmentFactor)
durationVal -= dag.maxRetargetTimespan
}
// Limit new value to the proof of work limit.
if newTarget.Cmp(dag.dagParams.PowLimit) > 0 {
newTarget.Set(dag.dagParams.PowLimit)
}
return util.BigToCompact(newTarget)
}
// findPrevTestNetDifficulty returns the difficulty of the previous block which
// did not have the special testnet minimum difficulty rule applied.
//
// This function MUST be called with the chain state lock held (for writes).
func (dag *BlockDAG) findPrevTestNetDifficulty(startNode *blockNode) uint32 {
// Search backwards through the chain for the last block without
// the special rule applied.
iterNode := startNode
for iterNode != nil && iterNode.height%dag.blocksPerRetarget != 0 &&
iterNode.bits == dag.dagParams.PowLimitBits {
iterNode = iterNode.selectedParent
}
// Return the found difficulty or the minimum difficulty if no
// appropriate block was found.
lastBits := dag.dagParams.PowLimitBits
if iterNode != nil {
lastBits = iterNode.bits
}
return lastBits
}
// calcNextRequiredDifficulty calculates the required difficulty for the block
// after the passed previous block node based on the difficulty retarget rules.
// This function differs from the exported CalcNextRequiredDifficulty in that
// the exported version uses the current best chain as the previous block node
// while this function accepts any block node.
func (dag *BlockDAG) calcNextRequiredDifficulty(bluestParent *blockNode, newBlockTime time.Time) (uint32, error) {
// Genesis block.
if bluestParent == nil {
return dag.dagParams.PowLimitBits, nil
}
// Return the previous block's difficulty requirements if this block
// is not at a difficulty retarget interval.
if (bluestParent.height+1)%dag.blocksPerRetarget != 0 {
// For networks that support it, allow special reduction of the
// required difficulty once too much time has elapsed without
// mining a block.
if dag.dagParams.ReduceMinDifficulty {
// Return minimum difficulty when more than the desired
// amount of time has elapsed without mining a block.
reductionTime := int64(dag.dagParams.MinDiffReductionTime /
time.Second)
allowMinTime := bluestParent.timestamp + reductionTime
if newBlockTime.Unix() > allowMinTime {
return dag.dagParams.PowLimitBits, nil
}
// The block was mined within the desired timeframe, so
// return the difficulty for the last block which did
// not have the special minimum difficulty rule applied.
return dag.findPrevTestNetDifficulty(bluestParent), nil
}
// For the main network (or any unrecognized networks), simply
// return the previous block's difficulty requirements.
return bluestParent.bits, nil
}
// Get the block node at the previous retarget (targetTimespan days
// worth of blocks).
firstNode := bluestParent.RelativeAncestor(dag.blocksPerRetarget - 1)
if firstNode == nil {
return 0, AssertError("unable to obtain previous retarget block")
}
// Limit the amount of adjustment that can occur to the previous
// difficulty.
actualTimespan := bluestParent.timestamp - firstNode.timestamp
adjustedTimespan := actualTimespan
if actualTimespan < dag.minRetargetTimespan {
adjustedTimespan = dag.minRetargetTimespan
} else if actualTimespan > dag.maxRetargetTimespan {
adjustedTimespan = dag.maxRetargetTimespan
}
// Calculate new target difficulty as:
// currentDifficulty * (adjustedTimespan / targetTimespan)
// The result uses integer division which means it will be slightly
// rounded down. Bitcoind also uses integer division to calculate this
// result.
oldTarget := util.CompactToBig(bluestParent.bits)
newTarget := new(big.Int).Mul(oldTarget, big.NewInt(adjustedTimespan))
targetTimeSpan := int64(dag.dagParams.TargetTimespan / time.Second)
newTarget.Div(newTarget, big.NewInt(targetTimeSpan))
// Limit new value to the proof of work limit.
if newTarget.Cmp(dag.dagParams.PowLimit) > 0 {
newTarget.Set(dag.dagParams.PowLimit)
}
// Log new target difficulty and return it. The new target logging is
// intentionally converting the bits back to a number instead of using
// newTarget since conversion to the compact representation loses
// precision.
newTargetBits := util.BigToCompact(newTarget)
log.Debugf("Difficulty retarget at block height %d", bluestParent.height+1)
log.Debugf("Old target %08x (%064x)", bluestParent.bits, oldTarget)
log.Debugf("New target %08x (%064x)", newTargetBits, util.CompactToBig(newTargetBits))
log.Debugf("Actual timespan %s, adjusted timespan %s, target timespan %s",
time.Duration(actualTimespan)*time.Second,
time.Duration(adjustedTimespan)*time.Second,
dag.dagParams.TargetTimespan)
return newTargetBits, nil
}
// CalcNextRequiredDifficulty calculates the required difficulty for the block
// after the end of the current best chain based on the difficulty retarget
// rules.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) CalcNextRequiredDifficulty(timestamp time.Time) (uint32, error) {
dag.dagLock.Lock()
difficulty, err := dag.calcNextRequiredDifficulty(dag.selectedTip(), timestamp)
dag.dagLock.Unlock()
return difficulty, err
}