mirror of
https://github.com/kaspanet/kaspad.git
synced 2025-03-30 15:08:33 +00:00
182 lines
6.3 KiB
Go
182 lines
6.3 KiB
Go
package difficulty
|
|
|
|
import (
|
|
"math/big"
|
|
"time"
|
|
)
|
|
|
|
var (
|
|
// bigOne is 1 represented as a big.Int. It is defined here to avoid
|
|
// the overhead of creating it multiple times.
|
|
bigOne = big.NewInt(1)
|
|
|
|
// oneLsh256 is 1 shifted left 256 bits. It is defined here to avoid
|
|
// the overhead of creating it multiple times.
|
|
oneLsh256 = new(big.Int).Lsh(bigOne, 256)
|
|
)
|
|
|
|
// CompactToBig converts a compact representation of a whole number N to an
|
|
// unsigned 32-bit number. The representation is similar to IEEE754 floating
|
|
// point numbers.
|
|
//
|
|
// Like IEEE754 floating point, there are three basic components: the sign,
|
|
// the exponent, and the mantissa. They are broken out as follows:
|
|
//
|
|
// - the most significant 8 bits represent the unsigned base 256 exponent
|
|
//
|
|
// - bit 23 (the 24th bit) represents the sign bit
|
|
//
|
|
// - the least significant 23 bits represent the mantissa
|
|
//
|
|
// -------------------------------------------------
|
|
// | Exponent | Sign | Mantissa |
|
|
// -------------------------------------------------
|
|
// | 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
|
|
// -------------------------------------------------
|
|
//
|
|
// The formula to calculate N is:
|
|
//
|
|
// N = (-1^sign) * mantissa * 256^(exponent-3)
|
|
func CompactToBig(compact uint32) *big.Int {
|
|
destination := big.NewInt(0)
|
|
CompactToBigWithDestination(compact, destination)
|
|
return destination
|
|
}
|
|
|
|
// CompactToBigWithDestination is a version of CompactToBig that
|
|
// takes a destination parameter. This is useful for saving memory,
|
|
// as then the destination big.Int can be reused.
|
|
// See CompactToBig for further details.
|
|
func CompactToBigWithDestination(compact uint32, destination *big.Int) {
|
|
// Extract the mantissa, sign bit, and exponent.
|
|
mantissa := compact & 0x007fffff
|
|
isNegative := compact&0x00800000 != 0
|
|
exponent := uint(compact >> 24)
|
|
|
|
// Since the base for the exponent is 256, the exponent can be treated
|
|
// as the number of bytes to represent the full 256-bit number. So,
|
|
// treat the exponent as the number of bytes and shift the mantissa
|
|
// right or left accordingly. This is equivalent to:
|
|
// N = mantissa * 256^(exponent-3)
|
|
if exponent <= 3 {
|
|
mantissa >>= 8 * (3 - exponent)
|
|
destination.SetInt64(int64(mantissa))
|
|
} else {
|
|
destination.SetInt64(int64(mantissa))
|
|
destination.Lsh(destination, 8*(exponent-3))
|
|
}
|
|
|
|
// Make it negative if the sign bit is set.
|
|
if isNegative {
|
|
destination.Neg(destination)
|
|
}
|
|
}
|
|
|
|
// BigToCompact converts a whole number N to a compact representation using
|
|
// an unsigned 32-bit number. The compact representation only provides 23 bits
|
|
// of precision, so values larger than (2^23 - 1) only encode the most
|
|
// significant digits of the number. See CompactToBig for details.
|
|
func BigToCompact(n *big.Int) uint32 {
|
|
// No need to do any work if it's zero.
|
|
if n.Sign() == 0 {
|
|
return 0
|
|
}
|
|
|
|
// Since the base for the exponent is 256, the exponent can be treated
|
|
// as the number of bytes. So, shift the number right or left
|
|
// accordingly. This is equivalent to:
|
|
// mantissa = mantissa / 256^(exponent-3)
|
|
var mantissa uint32
|
|
exponent := uint(len(n.Bytes()))
|
|
if exponent <= 3 {
|
|
mantissa = uint32(n.Bits()[0])
|
|
mantissa <<= 8 * (3 - exponent)
|
|
} else {
|
|
// Use a copy to avoid modifying the caller's original number.
|
|
tn := new(big.Int).Set(n)
|
|
mantissa = uint32(tn.Rsh(tn, 8*(exponent-3)).Bits()[0])
|
|
}
|
|
|
|
// When the mantissa already has the sign bit set, the number is too
|
|
// large to fit into the available 23-bits, so divide the number by 256
|
|
// and increment the exponent accordingly.
|
|
if mantissa&0x00800000 != 0 {
|
|
mantissa >>= 8
|
|
exponent++
|
|
}
|
|
|
|
// Pack the exponent, sign bit, and mantissa into an unsigned 32-bit
|
|
// int and return it.
|
|
compact := uint32(exponent<<24) | mantissa
|
|
if n.Sign() < 0 {
|
|
compact |= 0x00800000
|
|
}
|
|
return compact
|
|
}
|
|
|
|
// CalcWork calculates a work value from difficulty bits. Kaspa increases
|
|
// the difficulty for generating a block by decreasing the value which the
|
|
// generated hash must be less than. This difficulty target is stored in each
|
|
// block header using a compact representation as described in the documentation
|
|
// for CompactToBig. Since a lower target difficulty value equates to higher
|
|
// actual difficulty, the work value which will be accumulated must be the
|
|
// inverse of the difficulty. Also, in order to avoid potential division by
|
|
// zero and really small floating point numbers, the result adds 1 to the
|
|
// denominator and multiplies the numerator by 2^256.
|
|
func CalcWork(bits uint32) *big.Int {
|
|
// Return a work value of zero if the passed difficulty bits represent
|
|
// a negative number. Note this should not happen in practice with valid
|
|
// blocks, but an invalid block could trigger it.
|
|
difficultyNum := CompactToBig(bits)
|
|
if difficultyNum.Sign() <= 0 {
|
|
return big.NewInt(0)
|
|
}
|
|
|
|
// (1 << 256) / (difficultyNum + 1)
|
|
denominator := new(big.Int).Add(difficultyNum, bigOne)
|
|
return new(big.Int).Div(oneLsh256, denominator)
|
|
}
|
|
|
|
func getHashrate(target *big.Int, TargetTimePerBlock time.Duration) *big.Int {
|
|
// From: https://bitcoin.stackexchange.com/a/5557/40800
|
|
// difficulty = hashrate / (2^256 / max_target / seconds_per_block)
|
|
// hashrate = difficulty * (2^256 / max_target / seconds_per_block)
|
|
// difficulty = max_target / target
|
|
// hashrate = (max_target / target) * (2^256 / max_target / seconds_per_block)
|
|
// hashrate = 2^256 / (target * seconds_per_block)
|
|
|
|
tmp := new(big.Int)
|
|
divisor := new(big.Int).Set(target)
|
|
divisor.Mul(divisor, tmp.SetInt64(TargetTimePerBlock.Milliseconds()))
|
|
divisor.Div(divisor, tmp.SetInt64(int64(time.Second/time.Millisecond))) // Scale it up to seconds.
|
|
divisor.Div(oneLsh256, divisor)
|
|
return divisor
|
|
}
|
|
|
|
// GetHashrateString returns the expected hashrate of the network on a certain difficulty target.
|
|
func GetHashrateString(target *big.Int, TargetTimePerBlock time.Duration) string {
|
|
hashrate := getHashrate(target, TargetTimePerBlock)
|
|
in := hashrate.Text(10)
|
|
var postfix string
|
|
switch {
|
|
case len(in) <= 3:
|
|
return in + " H/s"
|
|
case len(in) <= 6:
|
|
postfix = " KH/s"
|
|
case len(in) <= 9:
|
|
postfix = " MH/s"
|
|
case len(in) <= 12:
|
|
postfix = " GH/s"
|
|
case len(in) <= 15:
|
|
postfix = " TH/s"
|
|
case len(in) <= 18:
|
|
postfix = " PH/s"
|
|
case len(in) <= 21:
|
|
postfix = " EH/s"
|
|
default:
|
|
return in + " H/s"
|
|
}
|
|
highPrecision := len(in) - ((len(in)-1)/3)*3
|
|
return in[:highPrecision] + "." + in[highPrecision:highPrecision+2] + postfix
|
|
}
|