mirror of
https://github.com/kaspanet/kaspad.git
synced 2025-06-02 04:06:42 +00:00

* Update constants * Add to transaction SigOpCount * Update mass calculation, and move it from InContext to InIsolation * Update block validation accordingly * Add SigOpCount validation during TransactionInContext * Remove checking of mass vs maxMassAcceptedByBlock from consensusStateManager * Update mining manager with latest changes * Add SigOpCount to MsgTx.Copy() * Fix initTestTransactionAcceptanceDataForClone * Fix all tests in transaction_equal_clone_test.go * Fix TestBlockMass * Fix tests in transactionvalidator package * Add SigOpCount to sighash * Fix TestPruningDepth * Fix problems in libkaspawalelt * Fix integration tests * Fix CalculateSignatureHash tests * Remove remaining places talking about block size * Add sanity check to checkBlockMass to make sure all transactions have their mass filled * always add own sigOpCount to sigHash * Update protowire/rpc.md * Start working on removing any remaining reference to block/tx size * Update rpc transaction verbose data to include mass rather then size * Convert verboseData and block size check to mass * Remove remaining usages of tx size in mempool * Move transactionEstimatedSerializedSize to transactionvalidator * Add PopulateMass to fakeRelayInvsContext * Move PopulateMass to beggining of ValidateAndInsertTransaction + fix in it * Assign mass a new number for backward-compatibility
334 lines
10 KiB
Go
334 lines
10 KiB
Go
// Copyright (c) 2013-2017 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package txscript
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
|
|
"github.com/kaspanet/kaspad/domain/consensus/utils/constants"
|
|
|
|
"github.com/kaspanet/kaspad/domain/consensus/model/externalapi"
|
|
)
|
|
|
|
// These are the constants specified for maximums in individual scripts.
|
|
const (
|
|
MaxOpsPerScript = 201 // Max number of non-push operations.
|
|
MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this.
|
|
MaxScriptElementSize = 520 // Max bytes pushable to the stack.
|
|
)
|
|
|
|
// isSmallInt returns whether or not the opcode is considered a small integer,
|
|
// which is an OP_0, or OP_1 through OP_16.
|
|
func isSmallInt(op *opcode) bool {
|
|
if op.value == Op0 || (op.value >= Op1 && op.value <= Op16) {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// isScriptHash returns true if the script passed is a pay-to-script-hash
|
|
// transaction, false otherwise.
|
|
func isScriptHash(pops []parsedOpcode) bool {
|
|
return len(pops) == 3 &&
|
|
pops[0].opcode.value == OpBlake2b &&
|
|
pops[1].opcode.value == OpData32 &&
|
|
pops[2].opcode.value == OpEqual
|
|
}
|
|
|
|
// IsPayToScriptHash returns true if the script is in the standard
|
|
// pay-to-script-hash (P2SH) format, false otherwise.
|
|
func IsPayToScriptHash(script *externalapi.ScriptPublicKey) bool {
|
|
pops, err := parseScript(script.Script)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
return isScriptHash(pops)
|
|
}
|
|
|
|
// isPushOnly returns true if the script only pushes data, false otherwise.
|
|
func isPushOnly(pops []parsedOpcode) bool {
|
|
// NOTE: This function does NOT verify opcodes directly since it is
|
|
// internal and is only called with parsed opcodes for scripts that did
|
|
// not have any parse errors. Thus, consensus is properly maintained.
|
|
|
|
for _, pop := range pops {
|
|
// All opcodes up to OP_16 are data push instructions.
|
|
// NOTE: This does consider OP_RESERVED to be a data push
|
|
// instruction, but execution of OP_RESERVED will fail anyways
|
|
// and matches the behavior required by consensus.
|
|
if pop.opcode.value > Op16 {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// parseScriptTemplate is the same as parseScript but allows the passing of the
|
|
// template list for testing purposes. When there are parse errors, it returns
|
|
// the list of parsed opcodes up to the point of failure along with the error.
|
|
func parseScriptTemplate(script []byte, opcodes *[256]opcode) ([]parsedOpcode, error) {
|
|
retScript := make([]parsedOpcode, 0, len(script))
|
|
for i := 0; i < len(script); {
|
|
instr := script[i]
|
|
op := &opcodes[instr]
|
|
pop := parsedOpcode{opcode: op}
|
|
|
|
// Parse data out of instruction.
|
|
switch {
|
|
// No additional data. Note that some of the opcodes, notably
|
|
// OP_1NEGATE, OP_0, and OP_[1-16] represent the data
|
|
// themselves.
|
|
case op.length == 1:
|
|
i++
|
|
|
|
// Data pushes of specific lengths -- OP_DATA_[1-75].
|
|
case op.length > 1:
|
|
if len(script[i:]) < op.length {
|
|
str := fmt.Sprintf("opcode %s requires %d "+
|
|
"bytes, but script only has %d remaining",
|
|
op.name, op.length, len(script[i:]))
|
|
return retScript, scriptError(ErrMalformedPush,
|
|
str)
|
|
}
|
|
|
|
// Slice out the data.
|
|
pop.data = script[i+1 : i+op.length]
|
|
i += op.length
|
|
|
|
// Data pushes with parsed lengths -- OP_PUSHDATAP{1,2,4}.
|
|
case op.length < 0:
|
|
var l uint
|
|
off := i + 1
|
|
|
|
if len(script[off:]) < -op.length {
|
|
str := fmt.Sprintf("opcode %s requires %d "+
|
|
"bytes, but script only has %d remaining",
|
|
op.name, -op.length, len(script[off:]))
|
|
return retScript, scriptError(ErrMalformedPush,
|
|
str)
|
|
}
|
|
|
|
// Next -length bytes are little endian length of data.
|
|
switch op.length {
|
|
case -1:
|
|
l = uint(script[off])
|
|
case -2:
|
|
l = ((uint(script[off+1]) << 8) |
|
|
uint(script[off]))
|
|
case -4:
|
|
l = ((uint(script[off+3]) << 24) |
|
|
(uint(script[off+2]) << 16) |
|
|
(uint(script[off+1]) << 8) |
|
|
uint(script[off]))
|
|
default:
|
|
str := fmt.Sprintf("invalid opcode length %d",
|
|
op.length)
|
|
return retScript, scriptError(ErrMalformedPush,
|
|
str)
|
|
}
|
|
|
|
// Move offset to beginning of the data.
|
|
off += -op.length
|
|
|
|
// Disallow entries that do not fit script or were
|
|
// sign extended.
|
|
if int(l) > len(script[off:]) || int(l) < 0 {
|
|
str := fmt.Sprintf("opcode %s pushes %d bytes, "+
|
|
"but script only has %d remaining",
|
|
op.name, int(l), len(script[off:]))
|
|
return retScript, scriptError(ErrMalformedPush,
|
|
str)
|
|
}
|
|
|
|
pop.data = script[off : off+int(l)]
|
|
i += 1 - op.length + int(l)
|
|
}
|
|
|
|
retScript = append(retScript, pop)
|
|
}
|
|
|
|
return retScript, nil
|
|
}
|
|
|
|
// parseScript preparses the script in bytes into a list of parsedOpcodes while
|
|
// applying a number of sanity checks.
|
|
func parseScript(script []byte) ([]parsedOpcode, error) {
|
|
return parseScriptTemplate(script, &opcodeArray)
|
|
}
|
|
|
|
// unparseScript reversed the action of parseScript and returns the
|
|
// parsedOpcodes as a list of bytes
|
|
func unparseScript(pops []parsedOpcode) ([]byte, error) {
|
|
script := make([]byte, 0, len(pops))
|
|
for _, pop := range pops {
|
|
b, err := pop.bytes()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
script = append(script, b...)
|
|
}
|
|
return script, nil
|
|
}
|
|
|
|
// DisasmString formats a disassembled script for one line printing. When the
|
|
// script fails to parse, the returned string will contain the disassembled
|
|
// script up to the point the failure occurred along with the string '[error]'
|
|
// appended. In addition, the reason the script failed to parse is returned
|
|
// if the caller wants more information about the failure.
|
|
func DisasmString(version uint16, buf []byte) (string, error) {
|
|
// currently, there is only one version exists so it equals to the max version.
|
|
if version == constants.MaxScriptPublicKeyVersion {
|
|
var disbuf bytes.Buffer
|
|
opcodes, err := parseScript(buf)
|
|
for _, pop := range opcodes {
|
|
disbuf.WriteString(pop.print(true))
|
|
disbuf.WriteByte(' ')
|
|
}
|
|
if disbuf.Len() > 0 {
|
|
disbuf.Truncate(disbuf.Len() - 1)
|
|
}
|
|
if err != nil {
|
|
disbuf.WriteString("[error]")
|
|
}
|
|
return disbuf.String(), err
|
|
}
|
|
return "", scriptError(ErrPubKeyFormat, "the version of the scriptPublicHash is higher then the known version")
|
|
}
|
|
|
|
// canonicalPush returns true if the object is either not a push instruction
|
|
// or the push instruction contained wherein is matches the canonical form
|
|
// or using the smallest instruction to do the job. False otherwise.
|
|
func canonicalPush(pop parsedOpcode) bool {
|
|
opcode := pop.opcode.value
|
|
data := pop.data
|
|
dataLen := len(pop.data)
|
|
if opcode > Op16 {
|
|
return true
|
|
}
|
|
|
|
if opcode < OpPushData1 && opcode > Op0 && (dataLen == 1 && data[0] <= 16) {
|
|
return false
|
|
}
|
|
if opcode == OpPushData1 && dataLen < OpPushData1 {
|
|
return false
|
|
}
|
|
if opcode == OpPushData2 && dataLen <= 0xff {
|
|
return false
|
|
}
|
|
if opcode == OpPushData4 && dataLen <= 0xffff {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// asSmallInt returns the passed opcode, which must be true according to
|
|
// isSmallInt(), as an integer.
|
|
func asSmallInt(op *opcode) int {
|
|
if op.value == Op0 {
|
|
return 0
|
|
}
|
|
|
|
return int(op.value - (Op1 - 1))
|
|
}
|
|
|
|
// getSigOpCount is the implementation function for counting the number of
|
|
// signature operations in the script provided by pops. If precise mode is
|
|
// requested then we attempt to count the number of operations for a multisig
|
|
// op. Otherwise we use the maximum.
|
|
func getSigOpCount(pops []parsedOpcode, precise bool) int {
|
|
nSigs := 0
|
|
for i, pop := range pops {
|
|
switch pop.opcode.value {
|
|
case OpCheckSig, OpCheckSigVerify, OpCheckSigECDSA:
|
|
nSigs++
|
|
case OpCheckMultiSig, OpCheckMultiSigVerify, OpCheckMultiSigECDSA:
|
|
// If we are being precise then look for familiar
|
|
// patterns for multisig, for now all we recognize is
|
|
// OP_1 - OP_16 to signify the number of pubkeys.
|
|
// Otherwise, we use the max of 20.
|
|
if precise && i > 0 &&
|
|
pops[i-1].opcode.value >= Op1 &&
|
|
pops[i-1].opcode.value <= Op16 {
|
|
nSigs += asSmallInt(pops[i-1].opcode)
|
|
} else {
|
|
nSigs += MaxPubKeysPerMultiSig
|
|
}
|
|
default:
|
|
// Not a sigop.
|
|
}
|
|
}
|
|
|
|
return nSigs
|
|
}
|
|
|
|
// GetSigOpCount provides a quick count of the number of signature operations
|
|
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
|
|
// If the script fails to parse, then the count up to the point of failure is
|
|
// returned.
|
|
func GetSigOpCount(script []byte) int {
|
|
// Don't check error since parseScript returns the parsed-up-to-error
|
|
// list of pops.
|
|
pops, _ := parseScript(script)
|
|
return getSigOpCount(pops, false)
|
|
}
|
|
|
|
// GetPreciseSigOpCount returns the number of signature operations in
|
|
// scriptPubKey. If p2sh is true then scriptSig may be searched for the
|
|
// Pay-To-Script-Hash script in order to find the precise number of signature
|
|
// operations in the transaction. If the script fails to parse, then the count
|
|
// up to the point of failure is returned.
|
|
func GetPreciseSigOpCount(scriptSig []byte, scriptPubKey *externalapi.ScriptPublicKey, isP2SH bool) int {
|
|
// Don't check error since parseScript returns the parsed-up-to-error
|
|
// list of pops.
|
|
pops, _ := parseScript(scriptPubKey.Script)
|
|
|
|
// Treat non P2SH transactions as normal.
|
|
if !(isP2SH && isScriptHash(pops)) {
|
|
return getSigOpCount(pops, true)
|
|
}
|
|
|
|
// The public key script is a pay-to-script-hash, so parse the signature
|
|
// script to get the final item. Scripts that fail to fully parse count
|
|
// as 0 signature operations.
|
|
sigPops, err := parseScript(scriptSig)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
|
|
// The signature script must only push data to the stack for P2SH to be
|
|
// a valid pair, so the signature operation count is 0 when that is not
|
|
// the case.
|
|
if !isPushOnly(sigPops) || len(sigPops) == 0 {
|
|
return 0
|
|
}
|
|
|
|
// The P2SH script is the last item the signature script pushes to the
|
|
// stack. When the script is empty, there are no signature operations.
|
|
shScript := sigPops[len(sigPops)-1].data
|
|
if len(shScript) == 0 {
|
|
return 0
|
|
}
|
|
|
|
// Parse the P2SH script and don't check the error since parseScript
|
|
// returns the parsed-up-to-error list of pops and the consensus rules
|
|
// dictate signature operations are counted up to the first parse
|
|
// failure.
|
|
shPops, _ := parseScript(shScript)
|
|
return getSigOpCount(shPops, true)
|
|
}
|
|
|
|
// IsUnspendable returns whether the passed public key script is unspendable, or
|
|
// guaranteed to fail at execution. This allows inputs to be pruned instantly
|
|
// when entering the UTXO set.
|
|
func IsUnspendable(scriptPubKey []byte) bool {
|
|
pops, err := parseScript(scriptPubKey)
|
|
if err != nil {
|
|
return true
|
|
}
|
|
|
|
return len(pops) > 0 && pops[0].opcode.value == OpReturn
|
|
}
|