kaspad/util/daghash/hash.go
Ori Newman 62ddd8fe1c [NOD-1444] Implement getHeaders RPC command (#944)
* [NOD-1444] Implement getHeaders RPC command

* [NOD-1444] Fix tests and comments

* [NOD-1444] Fix error message

* [NOD-1444] Make GetHeaders propagate header serialization errors

* [NOD-1444] RLock the dag on GetHeaders

* [NOD-1444] Change the error field number to 1000
2020-10-06 11:18:31 +03:00

268 lines
7.2 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Copyright (c) 2015 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package daghash
import (
"encoding/hex"
"github.com/pkg/errors"
"math/big"
"sort"
"strings"
)
// HashSize of array used to store hashes. See Hash.
const HashSize = 32
// TxIDSize of array used to store TxID. See TxID.
const TxIDSize = HashSize
// HashStringSize is the length of a Hash hash string.
const HashStringSize = HashSize * 2
// ErrHashStrSize describes an error that indicates the caller specified a hash
// string that hasn't the correct number of characters.
var ErrHashStrSize = errors.Errorf("hash string length should be %d bytes", HashStringSize)
// Hash is used in several of the kaspa messages and common structures. It
// typically represents the double sha256 of data.
type Hash [HashSize]byte
// TxID is transaction hash not including payload and signature.
type TxID Hash
// String returns the Hash as the hexadecimal string of the byte-reversed
// hash.
func (hash Hash) String() string {
for i := 0; i < HashSize/2; i++ {
hash[i], hash[HashSize-1-i] = hash[HashSize-1-i], hash[i]
}
return hex.EncodeToString(hash[:])
}
// String returns the TxId as the hexadecimal string of the byte-reversed
// hash.
func (txID TxID) String() string {
return Hash(txID).String()
}
// Strings returns a slice of strings representing the hashes in the given slice of hashes
func Strings(hashes []*Hash) []string {
strings := make([]string, len(hashes))
for i, hash := range hashes {
strings[i] = hash.String()
}
return strings
}
// CloneBytes returns a copy of the bytes which represent the hash as a byte
// slice.
//
// NOTE: It is generally cheaper to just slice the hash directly thereby reusing
// the same bytes rather than calling this method.
func (hash *Hash) CloneBytes() []byte {
newHash := make([]byte, HashSize)
copy(newHash, hash[:])
return newHash
}
// CloneBytes returns a copy of the bytes which represent the TxID as a byte
// slice.
//
// NOTE: It is generally cheaper to just slice the hash directly thereby reusing
// the same bytes rather than calling this method.
func (txID *TxID) CloneBytes() []byte {
return (*Hash)(txID).CloneBytes()
}
// SetBytes sets the bytes which represent the hash. An error is returned if
// the number of bytes passed in is not HashSize.
func (hash *Hash) SetBytes(newHash []byte) error {
nhlen := len(newHash)
if nhlen != HashSize {
return errors.Errorf("invalid hash length of %d, want %d", nhlen,
HashSize)
}
copy(hash[:], newHash)
return nil
}
// SetBytes sets the bytes which represent the TxID. An error is returned if
// the number of bytes passed in is not HashSize.
func (txID *TxID) SetBytes(newID []byte) error {
return (*Hash)(txID).SetBytes(newID)
}
// IsEqual returns true if target is the same as hash.
func (hash *Hash) IsEqual(target *Hash) bool {
if hash == nil && target == nil {
return true
}
if hash == nil || target == nil {
return false
}
return *hash == *target
}
// IsEqual returns true if target is the same as TxID.
func (txID *TxID) IsEqual(target *TxID) bool {
return (*Hash)(txID).IsEqual((*Hash)(target))
}
// AreEqual returns true if both slices contain the same hashes.
// Either slice must not contain duplicates.
func AreEqual(first []*Hash, second []*Hash) bool {
if len(first) != len(second) {
return false
}
for i := range first {
if !first[i].IsEqual(second[i]) {
return false
}
}
return true
}
// NewHash returns a new Hash from a byte slice. An error is returned if
// the number of bytes passed in is not HashSize.
func NewHash(newHash []byte) (*Hash, error) {
var sh Hash
err := sh.SetBytes(newHash)
if err != nil {
return nil, err
}
return &sh, err
}
// NewTxID returns a new TxID from a byte slice. An error is returned if
// the number of bytes passed in is not HashSize.
func NewTxID(newTxID []byte) (*TxID, error) {
hash, err := NewHash(newTxID)
return (*TxID)(hash), err
}
// NewHashFromStr creates a Hash from a hash string. The string should be
// the hexadecimal string of a byte-reversed hash, but any missing characters
// result in zero padding at the end of the Hash.
func NewHashFromStr(hash string) (*Hash, error) {
ret := new(Hash)
err := Decode(ret, hash)
if err != nil {
return nil, err
}
return ret, nil
}
// NewTxIDFromStr creates a TxID from a hash string. The string should be
// the hexadecimal string of a byte-reversed hash, but any missing characters
// result in zero padding at the end of the Hash.
func NewTxIDFromStr(idStr string) (*TxID, error) {
hash, err := NewHashFromStr(idStr)
return (*TxID)(hash), err
}
// Decode decodes the byte-reversed hexadecimal string encoding of a Hash to a
// destination.
func Decode(dst *Hash, src string) error {
// Return error if hash string is too long.
if len(src) != HashStringSize {
return ErrHashStrSize
}
// Hex decoder expects the hash to be a multiple of two. When not, pad
// with a leading zero.
var srcBytes []byte
if len(src)%2 == 0 {
srcBytes = []byte(src)
} else {
srcBytes = make([]byte, 1+len(src))
srcBytes[0] = '0'
copy(srcBytes[1:], src)
}
// Hex decode the source bytes to a temporary destination.
var reversedHash Hash
_, err := hex.Decode(reversedHash[HashSize-hex.DecodedLen(len(srcBytes)):], srcBytes)
if err != nil {
return errors.Wrap(err, "couldn't decode hash hex")
}
// Reverse copy from the temporary hash to destination. Because the
// temporary was zeroed, the written result will be correctly padded.
for i, b := range reversedHash[:HashSize/2] {
dst[i], dst[HashSize-1-i] = reversedHash[HashSize-1-i], b
}
return nil
}
// HashToBig converts a daghash.Hash into a big.Int that can be used to
// perform math comparisons.
func HashToBig(hash *Hash) *big.Int {
// A Hash is in little-endian, but the big package wants the bytes in
// big-endian, so reverse them.
buf := *hash
blen := len(buf)
for i := 0; i < blen/2; i++ {
buf[i], buf[blen-1-i] = buf[blen-1-i], buf[i]
}
return new(big.Int).SetBytes(buf[:])
}
// Cmp compares hash and target and returns:
//
// -1 if hash < target
// 0 if hash == target
// +1 if hash > target
//
func (hash *Hash) Cmp(target *Hash) int {
// We compare the hashes backwards because Hash is stored as a little endian byte array.
for i := HashSize - 1; i >= 0; i-- {
switch {
case hash[i] < target[i]:
return -1
case hash[i] > target[i]:
return 1
}
}
return 0
}
// Less returns true iff hash a is less than hash b
func Less(a *Hash, b *Hash) bool {
return a.Cmp(b) < 0
}
// LessTxID returns true if tx ID a is less than tx ID b
func LessTxID(a *TxID, b *TxID) bool {
return Less((*Hash)(a), (*Hash)(b))
}
// JoinHashesStrings joins all the stringified hashes separated by a separator
func JoinHashesStrings(hashes []*Hash, separator string) string {
return strings.Join(Strings(hashes), separator)
}
// Sort sorts a slice of hashes
func Sort(hashes []*Hash) {
sort.Slice(hashes, func(i, j int) bool {
return Less(hashes[i], hashes[j])
})
}
// ZeroHash is the Hash value of all zero bytes, defined here for
// convenience.
var ZeroHash Hash
// ZeroTxID is the Hash value of all zero bytes, defined here for
// convenience.
var ZeroTxID TxID