2020-11-17 16:00:16 +02:00

1051 lines
30 KiB
Go

package reachabilitymanager
import (
"math"
"strings"
"time"
"github.com/kaspanet/kaspad/domain/consensus/model"
"github.com/kaspanet/kaspad/domain/consensus/model/externalapi"
"github.com/pkg/errors"
)
var (
// defaultReindexWindow is the default target window size for reachability
// reindexes. Note that this is not a constant for testing purposes.
defaultReindexWindow uint64 = 200
// defaultReindexSlack is default the slack interval given to reachability
// tree nodes not in the selected parent chain. Note that this is not
// a constant for testing purposes.
defaultReindexSlack uint64 = 1 << 12
// slackReachabilityIntervalForReclaiming is the slack interval to
// reclaim during reachability reindexes earlier than the reindex root.
// See reclaimIntervalBeforeChosenChild for further details. Note that
// this is not a constant for testing purposes.
slackReachabilityIntervalForReclaiming uint64 = 1
)
// exponentialFractions returns a fraction of each size in sizes
// as follows:
// fraction[i] = 2^size[i] / sum_j(2^size[j])
// In the code below the above equation is divided by 2^max(size)
// to avoid exploding numbers. Note that in 1 / 2^(max(size)-size[i])
// we divide 1 by potentially a very large number, which will
// result in loss of float precision. This is not a problem - all
// numbers close to 0 bear effectively the same weight.
func exponentialFractions(sizes []uint64) []float64 {
maxSize := uint64(0)
for _, size := range sizes {
if size > maxSize {
maxSize = size
}
}
fractions := make([]float64, len(sizes))
for i, size := range sizes {
fractions[i] = 1 / math.Pow(2, float64(maxSize-size))
}
fractionsSum := float64(0)
for _, fraction := range fractions {
fractionsSum += fraction
}
for i, fraction := range fractions {
fractions[i] = fraction / fractionsSum
}
return fractions
}
func newReachabilityTreeNode() *model.ReachabilityTreeNode {
// Please see the comment above model.ReachabilityTreeNode to understand why
// we use these initial values.
interval := newReachabilityInterval(1, math.MaxUint64-1)
return &model.ReachabilityTreeNode{Interval: interval}
}
func (rt *reachabilityManager) intervalRangeForChildAllocation(hash *externalapi.DomainHash) (*model.ReachabilityInterval, error) {
interval, err := rt.interval(hash)
if err != nil {
return nil, err
}
// We subtract 1 from the end of the range to prevent the node from allocating
// the entire interval to its child, so its interval would *strictly* contain the interval of its child.
return newReachabilityInterval(interval.Start, interval.End-1), nil
}
func (rt *reachabilityManager) remainingIntervalBefore(node *externalapi.DomainHash) (*model.ReachabilityInterval, error) {
childRange, err := rt.intervalRangeForChildAllocation(node)
if err != nil {
return nil, err
}
children, err := rt.children(node)
if err != nil {
return nil, err
}
if len(children) == 0 {
return childRange, nil
}
firstChildInterval, err := rt.interval(children[0])
if err != nil {
return nil, err
}
return newReachabilityInterval(childRange.Start, firstChildInterval.Start-1), nil
}
func (rt *reachabilityManager) remainingIntervalAfter(node *externalapi.DomainHash) (*model.ReachabilityInterval, error) {
childRange, err := rt.intervalRangeForChildAllocation(node)
if err != nil {
return nil, err
}
children, err := rt.children(node)
if err != nil {
return nil, err
}
if len(children) == 0 {
return childRange, nil
}
lastChildInterval, err := rt.interval(children[len(children)-1])
if err != nil {
return nil, err
}
return newReachabilityInterval(lastChildInterval.End+1, childRange.End), nil
}
func (rt *reachabilityManager) hasSlackIntervalBefore(node *externalapi.DomainHash) (bool, error) {
interval, err := rt.remainingIntervalBefore(node)
if err != nil {
return false, err
}
return intervalSize(interval) > 0, nil
}
func (rt *reachabilityManager) hasSlackIntervalAfter(node *externalapi.DomainHash) (bool, error) {
interval, err := rt.remainingIntervalAfter(node)
if err != nil {
return false, err
}
return intervalSize(interval) > 0, nil
}
// addChild adds child to this tree node. If this node has no
// remaining interval to allocate, a reindexing is triggered.
// This method returns a list of model.ReachabilityTreeNodes modified
// by it.
func (rt *reachabilityManager) addChild(node, child, reindexRoot *externalapi.DomainHash) error {
remaining, err := rt.remainingIntervalAfter(node)
if err != nil {
return err
}
// Set the parent-child relationship
err = rt.addChildAndStage(node, child)
if err != nil {
return err
}
err = rt.stageParent(child, node)
if err != nil {
return err
}
// Temporarily set the child's interval to be empty, at
// the start of node's remaining interval. This is done
// so that child-of-node checks (e.g.
// findAncestorOfThisAmongChildrenOfOther) will not fail for node.
err = rt.stageInterval(child, newReachabilityInterval(remaining.Start, remaining.Start-1))
if err != nil {
return err
}
// Handle node not being a descendant of the reindex root.
// Note that we check node here instead of child because
// at this point we don't yet know child's interval.
isReindexRootAncestorOfNode, err := rt.IsReachabilityTreeAncestorOf(reindexRoot, node)
if err != nil {
return err
}
if !isReindexRootAncestorOfNode {
reindexStartTime := time.Now()
err := rt.reindexIntervalsEarlierThanReindexRoot(node, reindexRoot)
if err != nil {
return err
}
reindexTimeElapsed := time.Since(reindexStartTime)
log.Debugf("Reachability reindex triggered for "+
"block %s. This block is not a child of the current "+
"reindex root %s. Took %dms.",
node, reindexRoot, reindexTimeElapsed.Milliseconds())
return nil
}
// No allocation space left -- reindex
if intervalSize(remaining) == 0 {
reindexStartTime := time.Now()
err := rt.reindexIntervals(node)
if err != nil {
return err
}
reindexTimeElapsed := time.Since(reindexStartTime)
log.Debugf("Reachability reindex triggered for "+
"block %s. Took %dms.",
node, reindexTimeElapsed.Milliseconds())
return nil
}
// Allocate from the remaining space
allocated, _, err := intervalSplitInHalf(remaining)
if err != nil {
return err
}
return rt.stageInterval(child, allocated)
}
// reindexIntervals traverses the reachability subtree that's
// defined by this node and reallocates reachability interval space
// such that another reindexing is unlikely to occur shortly
// thereafter. It does this by traversing down the reachability
// tree until it finds a node with a subreeSize that's greater than
// its interval size. See propagateInterval for further details.
// This method returns a list of model.ReachabilityTreeNodes modified by it.
func (rt *reachabilityManager) reindexIntervals(node *externalapi.DomainHash) error {
current := node
// Initial interval and subtree sizes
currentInterval, err := rt.interval(node)
if err != nil {
return err
}
size := intervalSize(currentInterval)
subTreeSizeMap := make(map[externalapi.DomainHash]uint64)
err = rt.countSubtrees(current, subTreeSizeMap)
if err != nil {
return err
}
currentSubtreeSize := subTreeSizeMap[*current]
// Find the first ancestor that has sufficient interval space
for size < currentSubtreeSize {
currentParent, err := rt.parent(current)
if err != nil {
return err
}
if currentParent == nil {
// If we ended up here it means that there are more
// than 2^64 blocks, which shouldn't ever happen.
return errors.Errorf("missing tree " +
"parent during reindexing. Theoretically, this " +
"should only ever happen if there are more " +
"than 2^64 blocks in the DAG.")
}
current = currentParent
currentInterval, err := rt.interval(current)
if err != nil {
return err
}
size = intervalSize(currentInterval)
err = rt.countSubtrees(current, subTreeSizeMap)
if err != nil {
return err
}
currentSubtreeSize = subTreeSizeMap[*current]
}
// Propagate the interval to the subtree
return rt.propagateInterval(current, subTreeSizeMap)
}
// countSubtrees counts the size of each subtree under this node,
// and populates the provided subTreeSizeMap with the results.
// It is equivalent to the following recursive implementation:
//
// func (rt *reachabilityManager) countSubtrees(node *model.ReachabilityTreeNode) uint64 {
// subtreeSize := uint64(0)
// for _, child := range node.children {
// subtreeSize += child.countSubtrees()
// }
// return subtreeSize + 1
// }
//
// However, we are expecting (linearly) deep trees, and so a
// recursive stack-based approach is inefficient and will hit
// recursion limits. Instead, the same logic was implemented
// using a (queue-based) BFS method. At a high level, the
// algorithm uses BFS for reaching all leaves and pushes
// intermediate updates from leaves via parent chains until all
// size information is gathered at the root of the operation
// (i.e. at node).
func (rt *reachabilityManager) countSubtrees(node *externalapi.DomainHash, subTreeSizeMap map[externalapi.DomainHash]uint64) error {
queue := []*externalapi.DomainHash{node}
calculatedChildrenCount := make(map[externalapi.DomainHash]uint64)
for len(queue) > 0 {
var current *externalapi.DomainHash
current, queue = queue[0], queue[1:]
currentChildren, err := rt.children(current)
if err != nil {
return err
}
if len(currentChildren) == 0 {
// We reached a leaf
subTreeSizeMap[*current] = 1
} else if _, ok := subTreeSizeMap[*current]; !ok {
// We haven't yet calculated the subtree size of
// the current node. Add all its children to the
// queue
queue = append(queue, currentChildren...)
continue
}
// We reached a leaf or a pre-calculated subtree.
// Push information up
for *current != *node {
current, err = rt.parent(current)
if err != nil {
return err
}
// If the current is now nil, it means that the previous
// `current` was the genesis block -- the only block that
// does not have parents
if current == nil {
break
}
calculatedChildrenCount[*current]++
currentChildren, err := rt.children(current)
if err != nil {
return err
}
if calculatedChildrenCount[*current] != uint64(len(currentChildren)) {
// Not all subtrees of the current node are ready
break
}
// All children of `current` have calculated their subtree size.
// Sum them all together and add 1 to get the sub tree size of
// `current`.
childSubtreeSizeSum := uint64(0)
for _, child := range currentChildren {
childSubtreeSizeSum += subTreeSizeMap[*child]
}
subTreeSizeMap[*current] = childSubtreeSizeSum + 1
}
}
return nil
}
// propagateInterval propagates the new interval using a BFS traversal.
// Subtree intervals are recursively allocated according to subtree sizes and
// the allocation rule in splitWithExponentialBias. This method returns
// a list of model.ReachabilityTreeNodes modified by it.
func (rt *reachabilityManager) propagateInterval(node *externalapi.DomainHash, subTreeSizeMap map[externalapi.DomainHash]uint64) error {
queue := []*externalapi.DomainHash{node}
for len(queue) > 0 {
var current *externalapi.DomainHash
current, queue = queue[0], queue[1:]
currentChildren, err := rt.children(current)
if err != nil {
return err
}
if len(currentChildren) > 0 {
sizes := make([]uint64, len(currentChildren))
for i, child := range currentChildren {
sizes[i] = subTreeSizeMap[*child]
}
interval, err := rt.intervalRangeForChildAllocation(current)
if err != nil {
return err
}
intervals, err := intervalSplitWithExponentialBias(interval, sizes)
if err != nil {
return err
}
for i, child := range currentChildren {
childInterval := intervals[i]
err = rt.stageInterval(child, childInterval)
if err != nil {
return err
}
queue = append(queue, child)
}
}
}
return nil
}
func (rt *reachabilityManager) reindexIntervalsEarlierThanReindexRoot(node,
reindexRoot *externalapi.DomainHash) error {
// Find the common ancestor for both node and the reindex root
commonAncestor, err := rt.findCommonAncestorWithReindexRoot(node, reindexRoot)
if err != nil {
return err
}
// The chosen child is:
// a. A reachability tree child of `commonAncestor`
// b. A reachability tree ancestor of `reindexRoot`
commonAncestorChosenChild, err := rt.findAncestorOfThisAmongChildrenOfOther(reindexRoot, commonAncestor)
if err != nil {
return err
}
nodeInterval, err := rt.interval(node)
if err != nil {
return err
}
commonAncestorChosenChildInterval, err := rt.interval(commonAncestorChosenChild)
if err != nil {
return err
}
if nodeInterval.End < commonAncestorChosenChildInterval.Start {
// node is in the subtree before the chosen child
return rt.reclaimIntervalBeforeChosenChild(node, commonAncestor,
commonAncestorChosenChild, reindexRoot)
}
// node is either:
// * in the subtree after the chosen child
// * the common ancestor
// In both cases we reclaim from the "after" subtree. In the
// latter case this is arbitrary
return rt.reclaimIntervalAfterChosenChild(node, commonAncestor,
commonAncestorChosenChild, reindexRoot)
}
func (rt *reachabilityManager) reclaimIntervalBeforeChosenChild(rtn, commonAncestor, commonAncestorChosenChild,
reindexRoot *externalapi.DomainHash) error {
current := commonAncestorChosenChild
commonAncestorChosenChildHasSlackIntervalBefore, err := rt.hasSlackIntervalBefore(commonAncestorChosenChild)
if err != nil {
return err
}
if !commonAncestorChosenChildHasSlackIntervalBefore {
// The common ancestor ran out of slack before its chosen child.
// Climb up the reachability tree toward the reindex root until
// we find a node that has enough slack.
for {
currentHasSlackIntervalBefore, err := rt.hasSlackIntervalBefore(current)
if err != nil {
return err
}
if currentHasSlackIntervalBefore || *current == *reindexRoot {
break
}
current, err = rt.findAncestorOfThisAmongChildrenOfOther(reindexRoot, current)
if err != nil {
return err
}
}
if *current == *reindexRoot {
// "Deallocate" an interval of slackReachabilityIntervalForReclaiming
// from this node. This is the interval that we'll use for the new
// node.
originalInterval, err := rt.interval(current)
if err != nil {
return err
}
err = rt.stageInterval(current, newReachabilityInterval(
originalInterval.Start+slackReachabilityIntervalForReclaiming,
originalInterval.End,
))
if err != nil {
return err
}
err = rt.countSubtreesAndPropagateInterval(current)
if err != nil {
return err
}
err = rt.stageInterval(current, originalInterval)
if err != nil {
return err
}
}
}
// Go down the reachability tree towards the common ancestor.
// On every hop we reindex the reachability subtree before the
// current node with an interval that is smaller by
// slackReachabilityIntervalForReclaiming. This is to make room
// for the new node.
for *current != *commonAncestor {
currentInterval, err := rt.interval(current)
if err != nil {
return err
}
err = rt.stageInterval(current, newReachabilityInterval(
currentInterval.Start+slackReachabilityIntervalForReclaiming,
currentInterval.End,
))
if err != nil {
return err
}
currentParent, err := rt.parent(current)
if err != nil {
return err
}
err = rt.reindexIntervalsBeforeNode(currentParent, current)
if err != nil {
return err
}
current, err = rt.parent(current)
if err != nil {
return err
}
}
return nil
}
// reindexIntervalsBeforeNode applies a tight interval to the reachability
// subtree before `node`. Note that `node` itself is unaffected.
func (rt *reachabilityManager) reindexIntervalsBeforeNode(rtn, node *externalapi.DomainHash) error {
childrenBeforeNode, _, err := rt.splitChildrenAroundChild(rtn, node)
if err != nil {
return err
}
childrenBeforeNodeSizes, childrenBeforeNodeSubtreeSizeMaps, childrenBeforeNodeSizesSum :=
rt.calcReachabilityTreeNodeSizes(childrenBeforeNode)
// Apply a tight interval
nodeInterval, err := rt.interval(node)
if err != nil {
return err
}
newIntervalEnd := nodeInterval.Start - 1
newInterval := newReachabilityInterval(newIntervalEnd-childrenBeforeNodeSizesSum+1, newIntervalEnd)
intervals, err := intervalSplitExact(newInterval, childrenBeforeNodeSizes)
if err != nil {
return err
}
return rt.propagateIntervals(childrenBeforeNode, intervals, childrenBeforeNodeSubtreeSizeMaps)
}
func (rt *reachabilityManager) reclaimIntervalAfterChosenChild(node, commonAncestor, commonAncestorChosenChild,
reindexRoot *externalapi.DomainHash) error {
current := commonAncestorChosenChild
commonAncestorChosenChildHasSlackIntervalAfter, err := rt.hasSlackIntervalAfter(commonAncestorChosenChild)
if err != nil {
return err
}
if !commonAncestorChosenChildHasSlackIntervalAfter {
// The common ancestor ran out of slack after its chosen child.
// Climb up the reachability tree toward the reindex root until
// we find a node that has enough slack.
for {
currentHasSlackIntervalAfter, err := rt.hasSlackIntervalAfter(commonAncestorChosenChild)
if err != nil {
return err
}
if currentHasSlackIntervalAfter || *current == *reindexRoot {
break
}
current, err = rt.findAncestorOfThisAmongChildrenOfOther(reindexRoot, current)
if err != nil {
return err
}
}
if *current == *reindexRoot {
// "Deallocate" an interval of slackReachabilityIntervalForReclaiming
// from this node. This is the interval that we'll use for the new
// node.
originalInterval, err := rt.interval(current)
if err != nil {
return err
}
err = rt.stageInterval(current, newReachabilityInterval(
originalInterval.Start,
originalInterval.End-slackReachabilityIntervalForReclaiming,
))
if err != nil {
return err
}
err = rt.countSubtreesAndPropagateInterval(current)
if err != nil {
return err
}
err = rt.stageInterval(current, originalInterval)
if err != nil {
return err
}
}
}
// Go down the reachability tree towards the common ancestor.
// On every hop we reindex the reachability subtree after the
// current node with an interval that is smaller by
// slackReachabilityIntervalForReclaiming. This is to make room
// for the new node.
for *current != *commonAncestor {
currentInterval, err := rt.interval(current)
if err != nil {
return err
}
err = rt.stageInterval(current, newReachabilityInterval(
currentInterval.Start,
currentInterval.End-slackReachabilityIntervalForReclaiming,
))
if err != nil {
return err
}
currentParent, err := rt.parent(current)
if err != nil {
return err
}
err = rt.reindexIntervalsAfterNode(currentParent, current)
if err != nil {
return err
}
current = currentParent
}
return nil
}
// reindexIntervalsAfterNode applies a tight interval to the reachability
// subtree after `node`. Note that `node` itself is unaffected.
func (rt *reachabilityManager) reindexIntervalsAfterNode(rtn, node *externalapi.DomainHash) error {
_, childrenAfterNode, err := rt.splitChildrenAroundChild(rtn, node)
if err != nil {
return err
}
childrenAfterNodeSizes, childrenAfterNodeSubtreeSizeMaps, childrenAfterNodeSizesSum :=
rt.calcReachabilityTreeNodeSizes(childrenAfterNode)
// Apply a tight interval
nodeInterval, err := rt.interval(node)
if err != nil {
return err
}
newIntervalStart := nodeInterval.End + 1
newInterval := newReachabilityInterval(newIntervalStart, newIntervalStart+childrenAfterNodeSizesSum-1)
intervals, err := intervalSplitExact(newInterval, childrenAfterNodeSizes)
if err != nil {
return err
}
return rt.propagateIntervals(childrenAfterNode, intervals, childrenAfterNodeSubtreeSizeMaps)
}
// IsReachabilityTreeAncestorOf checks if this node is a reachability tree ancestor
// of the other node. Note that we use the graph theory convention
// here which defines that node is also an ancestor of itself.
func (rt *reachabilityManager) IsReachabilityTreeAncestorOf(node, other *externalapi.DomainHash) (bool, error) {
nodeInterval, err := rt.interval(node)
if err != nil {
return false, err
}
otherInterval, err := rt.interval(other)
if err != nil {
return false, err
}
return intervalContains(nodeInterval, otherInterval), nil
}
// findCommonAncestorWithReindexRoot finds the most recent reachability
// tree ancestor common to both node and the given reindex root. Note
// that we assume that almost always the chain between the reindex root
// and the common ancestor is longer than the chain between node and the
// common ancestor.
func (rt *reachabilityManager) findCommonAncestorWithReindexRoot(node, reindexRoot *externalapi.DomainHash) (*externalapi.DomainHash, error) {
currentThis := node
for {
isAncestorOf, err := rt.IsReachabilityTreeAncestorOf(currentThis, reindexRoot)
if err != nil {
return nil, err
}
if isAncestorOf {
return currentThis, nil
}
currentThis, err = rt.parent(currentThis)
if err != nil {
return nil, err
}
}
}
// String returns a string representation of a reachability tree node
// and its children.
func (rt *reachabilityManager) String(node *externalapi.DomainHash) (string, error) {
queue := []*externalapi.DomainHash{node}
nodeInterval, err := rt.interval(node)
if err != nil {
return "", err
}
lines := []string{nodeInterval.String()}
for len(queue) > 0 {
var current *externalapi.DomainHash
current, queue = queue[0], queue[1:]
currentChildren, err := rt.children(current)
if err != nil {
return "", err
}
if len(currentChildren) == 0 {
continue
}
line := ""
for _, child := range currentChildren {
childInterval, err := rt.interval(child)
if err != nil {
return "", err
}
line += childInterval.String()
queue = append(queue, child)
}
lines = append([]string{line}, lines...)
}
return strings.Join(lines, "\n"), nil
}
func (rt *reachabilityManager) updateReindexRoot(newTreeNode *externalapi.DomainHash) error {
nextReindexRoot, err := rt.reindexRoot()
if err != nil {
return err
}
for {
candidateReindexRoot, found, err := rt.maybeMoveReindexRoot(nextReindexRoot, newTreeNode)
if err != nil {
return err
}
if !found {
break
}
nextReindexRoot = candidateReindexRoot
}
rt.stageReindexRoot(nextReindexRoot)
return nil
}
func (rt *reachabilityManager) maybeMoveReindexRoot(reindexRoot, newTreeNode *externalapi.DomainHash) (
newReindexRoot *externalapi.DomainHash, found bool, err error) {
isAncestorOf, err := rt.IsReachabilityTreeAncestorOf(reindexRoot, newTreeNode)
if err != nil {
return nil, false, err
}
if !isAncestorOf {
commonAncestor, err := rt.findCommonAncestorWithReindexRoot(newTreeNode, reindexRoot)
if err != nil {
return nil, false, err
}
return commonAncestor, true, nil
}
reindexRootChosenChild, err := rt.findAncestorOfThisAmongChildrenOfOther(newTreeNode, reindexRoot)
if err != nil {
return nil, false, err
}
newTreeNodeGHOSTDAGData, err := rt.ghostdagDataStore.Get(rt.databaseContext, newTreeNode)
if err != nil {
return nil, false, err
}
reindexRootChosenChildGHOSTDAGData, err := rt.ghostdagDataStore.Get(rt.databaseContext, reindexRootChosenChild)
if err != nil {
return nil, false, err
}
if newTreeNodeGHOSTDAGData.BlueScore-reindexRootChosenChildGHOSTDAGData.BlueScore < rt.reindexWindow {
return nil, false, nil
}
err = rt.concentrateIntervalAroundReindexRootChosenChild(reindexRoot, reindexRootChosenChild)
if err != nil {
return nil, false, err
}
return reindexRootChosenChild, true, nil
}
// findAncestorOfThisAmongChildrenOfOther finds the reachability tree child
// of node that is the ancestor of node.
func (rt *reachabilityManager) findAncestorOfThisAmongChildrenOfOther(this, other *externalapi.DomainHash) (*externalapi.DomainHash, error) {
otherChildren, err := rt.children(other)
if err != nil {
return nil, err
}
ancestor, ok := rt.findAncestorOfNode(otherChildren, this)
if !ok {
return nil, errors.Errorf("node is not an ancestor of this")
}
return ancestor, nil
}
func (rt *reachabilityManager) concentrateIntervalAroundReindexRootChosenChild(reindexRoot,
reindexRootChosenChild *externalapi.DomainHash) error {
reindexRootChildNodesBeforeChosen, reindexRootChildNodesAfterChosen, err :=
rt.splitChildrenAroundChild(reindexRoot, reindexRootChosenChild)
if err != nil {
return err
}
reindexRootChildNodesBeforeChosenSizesSum, err :=
rt.tightenIntervalsBeforeReindexRootChosenChild(reindexRoot, reindexRootChildNodesBeforeChosen)
if err != nil {
return err
}
reindexRootChildNodesAfterChosenSizesSum, err :=
rt.tightenIntervalsAfterReindexRootChosenChild(reindexRoot, reindexRootChildNodesAfterChosen)
if err != nil {
return err
}
err = rt.expandIntervalInReindexRootChosenChild(reindexRoot, reindexRootChosenChild,
reindexRootChildNodesBeforeChosenSizesSum, reindexRootChildNodesAfterChosenSizesSum)
if err != nil {
return err
}
return nil
}
// splitChildrenAroundChild splits `node` into two slices: the nodes that are before
// `child` and the nodes that are after.
func (rt *reachabilityManager) splitChildrenAroundChild(node, child *externalapi.DomainHash) (
nodesBeforeChild, nodesAfterChild []*externalapi.DomainHash, err error) {
nodeChildren, err := rt.children(node)
if err != nil {
return nil, nil, err
}
for i, candidateChild := range nodeChildren {
if *candidateChild == *child {
return nodeChildren[:i], nodeChildren[i+1:], nil
}
}
return nil, nil, errors.Errorf("child not a child of node")
}
func (rt *reachabilityManager) tightenIntervalsBeforeReindexRootChosenChild(
reindexRoot *externalapi.DomainHash,
reindexRootChildNodesBeforeChosen []*externalapi.DomainHash) (reindexRootChildNodesBeforeChosenSizesSum uint64,
err error) {
reindexRootChildNodesBeforeChosenSizes, reindexRootChildNodesBeforeChosenSubtreeSizeMaps, reindexRootChildNodesBeforeChosenSizesSum :=
rt.calcReachabilityTreeNodeSizes(reindexRootChildNodesBeforeChosen)
reindexRootInterval, err := rt.interval(reindexRoot)
if err != nil {
return 0, err
}
intervalBeforeReindexRootStart := newReachabilityInterval(
reindexRootInterval.Start+rt.reindexSlack,
reindexRootInterval.Start+rt.reindexSlack+reindexRootChildNodesBeforeChosenSizesSum-1,
)
err = rt.propagateChildIntervals(intervalBeforeReindexRootStart, reindexRootChildNodesBeforeChosen,
reindexRootChildNodesBeforeChosenSizes, reindexRootChildNodesBeforeChosenSubtreeSizeMaps)
if err != nil {
return 0, err
}
return reindexRootChildNodesBeforeChosenSizesSum, nil
}
func (rt *reachabilityManager) tightenIntervalsAfterReindexRootChosenChild(
reindexRoot *externalapi.DomainHash,
reindexRootChildNodesAfterChosen []*externalapi.DomainHash) (reindexRootChildNodesAfterChosenSizesSum uint64,
err error) {
reindexRootChildNodesAfterChosenSizes, reindexRootChildNodesAfterChosenSubtreeSizeMaps,
reindexRootChildNodesAfterChosenSizesSum :=
rt.calcReachabilityTreeNodeSizes(reindexRootChildNodesAfterChosen)
reindexRootInterval, err := rt.interval(reindexRoot)
if err != nil {
return 0, err
}
intervalAfterReindexRootEnd := newReachabilityInterval(
reindexRootInterval.End-rt.reindexSlack-reindexRootChildNodesAfterChosenSizesSum,
reindexRootInterval.End-rt.reindexSlack-1,
)
err = rt.propagateChildIntervals(intervalAfterReindexRootEnd, reindexRootChildNodesAfterChosen,
reindexRootChildNodesAfterChosenSizes, reindexRootChildNodesAfterChosenSubtreeSizeMaps)
if err != nil {
return 0, err
}
return reindexRootChildNodesAfterChosenSizesSum, nil
}
func (rt *reachabilityManager) expandIntervalInReindexRootChosenChild(reindexRoot,
reindexRootChosenChild *externalapi.DomainHash, reindexRootChildNodesBeforeChosenSizesSum uint64,
reindexRootChildNodesAfterChosenSizesSum uint64) error {
reindexRootInterval, err := rt.interval(reindexRoot)
if err != nil {
return err
}
newReindexRootChildInterval := newReachabilityInterval(
reindexRootInterval.Start+reindexRootChildNodesBeforeChosenSizesSum+rt.reindexSlack,
reindexRootInterval.End-reindexRootChildNodesAfterChosenSizesSum-rt.reindexSlack-1,
)
reindexRootChosenChildInterval, err := rt.interval(reindexRootChosenChild)
if err != nil {
return err
}
if !intervalContains(newReindexRootChildInterval, reindexRootChosenChildInterval) {
// New interval doesn't contain the previous one, propagation is required
// We assign slack on both sides as an optimization. Were we to
// assign a tight interval, the next time the reindex root moves we
// would need to propagate intervals again. That is to say, When we
// DO allocate slack, next time
// expandIntervalInReindexRootChosenChild is called (next time the
// reindex root moves), newReindexRootChildInterval is likely to
// contain reindexRootChosenChild.Interval.
err := rt.stageInterval(reindexRootChosenChild, newReachabilityInterval(
newReindexRootChildInterval.Start+rt.reindexSlack,
newReindexRootChildInterval.End-rt.reindexSlack,
))
if err != nil {
return err
}
err = rt.countSubtreesAndPropagateInterval(reindexRootChosenChild)
if err != nil {
return err
}
}
err = rt.stageInterval(reindexRootChosenChild, newReindexRootChildInterval)
if err != nil {
return err
}
return nil
}
func (rt *reachabilityManager) countSubtreesAndPropagateInterval(node *externalapi.DomainHash) error {
subtreeSizeMap := make(map[externalapi.DomainHash]uint64)
err := rt.countSubtrees(node, subtreeSizeMap)
if err != nil {
return err
}
return rt.propagateInterval(node, subtreeSizeMap)
}
func (rt *reachabilityManager) calcReachabilityTreeNodeSizes(treeNodes []*externalapi.DomainHash) (
sizes []uint64, subtreeSizeMaps []map[externalapi.DomainHash]uint64, sum uint64) {
sizes = make([]uint64, len(treeNodes))
subtreeSizeMaps = make([]map[externalapi.DomainHash]uint64, len(treeNodes))
sum = 0
for i, node := range treeNodes {
subtreeSizeMap := make(map[externalapi.DomainHash]uint64)
err := rt.countSubtrees(node, subtreeSizeMap)
if err != nil {
return nil, nil, 0
}
subtreeSize := subtreeSizeMap[*node]
sizes[i] = subtreeSize
subtreeSizeMaps[i] = subtreeSizeMap
sum += subtreeSize
}
return sizes, subtreeSizeMaps, sum
}
func (rt *reachabilityManager) propagateChildIntervals(interval *model.ReachabilityInterval,
childNodes []*externalapi.DomainHash, sizes []uint64, subtreeSizeMaps []map[externalapi.DomainHash]uint64) error {
childIntervalSizes, err := intervalSplitExact(interval, sizes)
if err != nil {
return err
}
for i, child := range childNodes {
childInterval := childIntervalSizes[i]
err := rt.stageInterval(child, childInterval)
if err != nil {
return err
}
childSubtreeSizeMap := subtreeSizeMaps[i]
err = rt.propagateInterval(child, childSubtreeSizeMap)
if err != nil {
return err
}
}
return nil
}