kaspad/blockdag/dag.go
Ori Newman 1e447432a7 [NOD-28] Move subnetwork consts to subnetworkid package (#197)
* [NOD-28] Move SubnetworkID constants to subnetworkid package

* [NOD-28] change subnetwork id constants to pointers
2019-03-10 12:27:06 +02:00

1625 lines
55 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockdag
import (
"errors"
"fmt"
"math"
"sync"
"time"
"github.com/daglabs/btcd/util/subnetworkid"
"github.com/daglabs/btcd/dagconfig"
"github.com/daglabs/btcd/dagconfig/daghash"
"github.com/daglabs/btcd/database"
"github.com/daglabs/btcd/txscript"
"github.com/daglabs/btcd/util"
"github.com/daglabs/btcd/wire"
)
const (
// maxOrphanBlocks is the maximum number of orphan blocks that can be
// queued.
maxOrphanBlocks = 100
// FinalityInterval is the interval that determines the finality window of the DAG.
FinalityInterval = 100
)
// BlockLocator is used to help locate a specific block. The algorithm for
// building the block locator is to add the hashes in reverse order until
// the genesis block is reached. In order to keep the list of locator hashes
// to a reasonable number of entries, first the most recent previous 12 block
// hashes are added, then the step is doubled each loop iteration to
// exponentially decrease the number of hashes as a function of the distance
// from the block being located.
//
// For example, assume a block chain with a side chain as depicted below:
// genesis -> 1 -> 2 -> ... -> 15 -> 16 -> 17 -> 18
// \-> 16a -> 17a
//
// The block locator for block 17a would be the hashes of blocks:
// [17a 16a 15 14 13 12 11 10 9 8 7 6 4 genesis]
type BlockLocator []*daghash.Hash
// orphanBlock represents a block that we don't yet have the parent for. It
// is a normal block plus an expiration time to prevent caching the orphan
// forever.
type orphanBlock struct {
block *util.Block
expiration time.Time
}
// BlockDAG provides functions for working with the bitcoin block chain.
// It includes functionality such as rejecting duplicate blocks, ensuring blocks
// follow all rules, orphan handling, checkpoint handling, and best chain
// selection with reorganization.
type BlockDAG struct {
// The following fields are set when the instance is created and can't
// be changed afterwards, so there is no need to protect them with a
// separate mutex.
checkpoints []dagconfig.Checkpoint
checkpointsByHeight map[int32]*dagconfig.Checkpoint
db database.DB
dagParams *dagconfig.Params
timeSource MedianTimeSource
sigCache *txscript.SigCache
indexManager IndexManager
genesis *blockNode
// The following fields are calculated based upon the provided chain
// parameters. They are also set when the instance is created and
// can't be changed afterwards, so there is no need to protect them with
// a separate mutex.
minRetargetTimespan int64 // target timespan / adjustment factor
maxRetargetTimespan int64 // target timespan * adjustment factor
blocksPerRetarget int32 // target timespan / target time per block
// dagLock protects concurrent access to the vast majority of the
// fields in this struct below this point.
dagLock sync.RWMutex
utxoLock sync.RWMutex
// index and virtual are related to the memory block index. They both
// have their own locks, however they are often also protected by the
// DAG lock to help prevent logic races when blocks are being processed.
// index houses the entire block index in memory. The block index is
// a tree-shaped structure.
index *blockIndex
// blockCount holds the number of blocks in the DAG
blockCount uint64
// virtual tracks the current tips.
virtual *virtualBlock
// subnetworkID holds the subnetwork ID of the DAG
subnetworkID *subnetworkid.SubnetworkID
// These fields are related to handling of orphan blocks. They are
// protected by a combination of the chain lock and the orphan lock.
orphanLock sync.RWMutex
orphans map[daghash.Hash]*orphanBlock
prevOrphans map[daghash.Hash][]*orphanBlock
oldestOrphan *orphanBlock
// These fields are related to checkpoint handling. They are protected
// by the chain lock.
nextCheckpoint *dagconfig.Checkpoint
checkpointNode *blockNode
// The following caches are used to efficiently keep track of the
// current deployment threshold state of each rule change deployment.
//
// This information is stored in the database so it can be quickly
// reconstructed on load.
//
// warningCaches caches the current deployment threshold state for blocks
// in each of the **possible** deployments. This is used in order to
// detect when new unrecognized rule changes are being voted on and/or
// have been activated such as will be the case when older versions of
// the software are being used
//
// deploymentCaches caches the current deployment threshold state for
// blocks in each of the actively defined deployments.
warningCaches []thresholdStateCache
deploymentCaches []thresholdStateCache
// The following fields are used to determine if certain warnings have
// already been shown.
//
// unknownRulesWarned refers to warnings due to unknown rules being
// activated.
//
// unknownVersionsWarned refers to warnings due to unknown versions
// being mined.
unknownRulesWarned bool
unknownVersionsWarned bool
// The notifications field stores a slice of callbacks to be executed on
// certain blockchain events.
notificationsLock sync.RWMutex
notifications []NotificationCallback
lastFinalityPoint *blockNode
SubnetworkStore *SubnetworkStore
}
// HaveBlock returns whether or not the DAG instance has the block represented
// by the passed hash. This includes checking the various places a block can
// be in, like part of the DAG or the orphan pool.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) HaveBlock(hash *daghash.Hash) (bool, error) {
exists, err := dag.blockExists(hash)
if err != nil {
return false, err
}
return exists || dag.IsKnownOrphan(hash), nil
}
// HaveBlocks returns whether or not the DAG instances has all blocks represented
// by the passed hashes. This includes checking the various places a block can
// be in, like part of the DAG or the orphan pool.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) HaveBlocks(hashes []daghash.Hash) (bool, error) {
for _, hash := range hashes {
haveBlock, err := dag.HaveBlock(&hash)
if err != nil {
return false, err
}
if !haveBlock {
return false, nil
}
}
return true, nil
}
// IsKnownOrphan returns whether the passed hash is currently a known orphan.
// Keep in mind that only a limited number of orphans are held onto for a
// limited amount of time, so this function must not be used as an absolute
// way to test if a block is an orphan block. A full block (as opposed to just
// its hash) must be passed to ProcessBlock for that purpose. However, calling
// ProcessBlock with an orphan that already exists results in an error, so this
// function provides a mechanism for a caller to intelligently detect *recent*
// duplicate orphans and react accordingly.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsKnownOrphan(hash *daghash.Hash) bool {
// Protect concurrent access. Using a read lock only so multiple
// readers can query without blocking each other.
dag.orphanLock.RLock()
_, exists := dag.orphans[*hash]
dag.orphanLock.RUnlock()
return exists
}
// GetOrphanRoot returns the head of the chain for the provided hash from the
// map of orphan blocks.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) GetOrphanRoot(hash *daghash.Hash) *daghash.Hash {
// Protect concurrent access. Using a read lock only so multiple
// readers can query without blocking each other.
dag.orphanLock.RLock()
defer dag.orphanLock.RUnlock()
// Keep looping while the parent of each orphaned block is
// known and is an orphan itself.
orphanRoot := hash
parentHash := hash
for {
orphan, exists := dag.orphans[*parentHash]
if !exists {
break
}
orphanRoot = parentHash
parentHash = orphan.block.MsgBlock().Header.SelectedParentHash()
}
return orphanRoot
}
// removeOrphanBlock removes the passed orphan block from the orphan pool and
// previous orphan index.
func (dag *BlockDAG) removeOrphanBlock(orphan *orphanBlock) {
// Protect concurrent access.
dag.orphanLock.Lock()
defer dag.orphanLock.Unlock()
// Remove the orphan block from the orphan pool.
orphanHash := orphan.block.Hash()
delete(dag.orphans, *orphanHash)
// Remove the reference from the previous orphan index too. An indexing
// for loop is intentionally used over a range here as range does not
// reevaluate the slice on each iteration nor does it adjust the index
// for the modified slice.
parentHash := orphan.block.MsgBlock().Header.SelectedParentHash()
orphans := dag.prevOrphans[*parentHash]
for i := 0; i < len(orphans); i++ {
hash := orphans[i].block.Hash()
if hash.IsEqual(orphanHash) {
copy(orphans[i:], orphans[i+1:])
orphans[len(orphans)-1] = nil
orphans = orphans[:len(orphans)-1]
i--
}
}
dag.prevOrphans[*parentHash] = orphans
// Remove the map entry altogether if there are no longer any orphans
// which depend on the parent hash.
if len(dag.prevOrphans[*parentHash]) == 0 {
delete(dag.prevOrphans, *parentHash)
}
}
// addOrphanBlock adds the passed block (which is already determined to be
// an orphan prior calling this function) to the orphan pool. It lazily cleans
// up any expired blocks so a separate cleanup poller doesn't need to be run.
// It also imposes a maximum limit on the number of outstanding orphan
// blocks and will remove the oldest received orphan block if the limit is
// exceeded.
func (dag *BlockDAG) addOrphanBlock(block *util.Block) {
// Remove expired orphan blocks.
for _, oBlock := range dag.orphans {
if time.Now().After(oBlock.expiration) {
dag.removeOrphanBlock(oBlock)
continue
}
// Update the oldest orphan block pointer so it can be discarded
// in case the orphan pool fills up.
if dag.oldestOrphan == nil || oBlock.expiration.Before(dag.oldestOrphan.expiration) {
dag.oldestOrphan = oBlock
}
}
// Limit orphan blocks to prevent memory exhaustion.
if len(dag.orphans)+1 > maxOrphanBlocks {
// Remove the oldest orphan to make room for the new one.
dag.removeOrphanBlock(dag.oldestOrphan)
dag.oldestOrphan = nil
}
// Protect concurrent access. This is intentionally done here instead
// of near the top since removeOrphanBlock does its own locking and
// the range iterator is not invalidated by removing map entries.
dag.orphanLock.Lock()
defer dag.orphanLock.Unlock()
// Insert the block into the orphan map with an expiration time
// 1 hour from now.
expiration := time.Now().Add(time.Hour)
oBlock := &orphanBlock{
block: block,
expiration: expiration,
}
dag.orphans[*block.Hash()] = oBlock
// Add to parent hash lookup index for faster dependency lookups.
parentHash := block.MsgBlock().Header.SelectedParentHash()
dag.prevOrphans[*parentHash] = append(dag.prevOrphans[*parentHash], oBlock)
}
// SequenceLock represents the converted relative lock-time in seconds, and
// absolute block-height for a transaction input's relative lock-times.
// According to SequenceLock, after the referenced input has been confirmed
// within a block, a transaction spending that input can be included into a
// block either after 'seconds' (according to past median time), or once the
// 'BlockHeight' has been reached.
type SequenceLock struct {
Seconds int64
BlockHeight int32
}
// CalcSequenceLock computes a relative lock-time SequenceLock for the passed
// transaction using the passed UTXOSet to obtain the past median time
// for blocks in which the referenced inputs of the transactions were included
// within. The generated SequenceLock lock can be used in conjunction with a
// block height, and adjusted median block time to determine if all the inputs
// referenced within a transaction have reached sufficient maturity allowing
// the candidate transaction to be included in a block.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) CalcSequenceLock(tx *util.Tx, utxoSet UTXOSet, mempool bool) (*SequenceLock, error) {
dag.dagLock.Lock()
defer dag.dagLock.Unlock()
return dag.calcSequenceLock(dag.selectedTip(), utxoSet, tx, mempool)
}
// calcSequenceLock computes the relative lock-times for the passed
// transaction. See the exported version, CalcSequenceLock for further details.
//
// This function MUST be called with the chain state lock held (for writes).
func (dag *BlockDAG) calcSequenceLock(node *blockNode, utxoSet UTXOSet, tx *util.Tx, mempool bool) (*SequenceLock, error) {
// A value of -1 for each relative lock type represents a relative time
// lock value that will allow a transaction to be included in a block
// at any given height or time.
sequenceLock := &SequenceLock{Seconds: -1, BlockHeight: -1}
// Sequence locks don't apply to block reward transactions Therefore, we
// return sequence lock values of -1 indicating that this transaction
// can be included within a block at any given height or time.
if IsBlockReward(tx) {
return sequenceLock, nil
}
// Grab the next height from the PoV of the passed blockNode to use for
// inputs present in the mempool.
nextHeight := node.height + 1
mTx := tx.MsgTx()
for txInIndex, txIn := range mTx.TxIn {
entry, ok := utxoSet.Get(txIn.PreviousOutPoint)
if !ok {
str := fmt.Sprintf("output %s referenced from "+
"transaction %s:%d either does not exist or "+
"has already been spent", txIn.PreviousOutPoint,
tx.ID(), txInIndex)
return sequenceLock, ruleError(ErrMissingTxOut, str)
}
// If the input height is set to the mempool height, then we
// assume the transaction makes it into the next block when
// evaluating its sequence blocks.
inputHeight := entry.BlockHeight()
if inputHeight == 0x7fffffff {
inputHeight = nextHeight
}
// Given a sequence number, we apply the relative time lock
// mask in order to obtain the time lock delta required before
// this input can be spent.
sequenceNum := txIn.Sequence
relativeLock := int64(sequenceNum & wire.SequenceLockTimeMask)
switch {
// Relative time locks are disabled for this input, so we can
// skip any further calculation.
case sequenceNum&wire.SequenceLockTimeDisabled == wire.SequenceLockTimeDisabled:
continue
case sequenceNum&wire.SequenceLockTimeIsSeconds == wire.SequenceLockTimeIsSeconds:
// This input requires a relative time lock expressed
// in seconds before it can be spent. Therefore, we
// need to query for the block prior to the one in
// which this input was included within so we can
// compute the past median time for the block prior to
// the one which included this referenced output.
prevInputHeight := inputHeight - 1
if prevInputHeight < 0 {
prevInputHeight = 0
}
blockNode := node.Ancestor(prevInputHeight)
medianTime := blockNode.PastMedianTime()
// Time based relative time-locks as defined by BIP 68
// have a time granularity of RelativeLockSeconds, so
// we shift left by this amount to convert to the
// proper relative time-lock. We also subtract one from
// the relative lock to maintain the original lockTime
// semantics.
timeLockSeconds := (relativeLock << wire.SequenceLockTimeGranularity) - 1
timeLock := medianTime.Unix() + timeLockSeconds
if timeLock > sequenceLock.Seconds {
sequenceLock.Seconds = timeLock
}
default:
// The relative lock-time for this input is expressed
// in blocks so we calculate the relative offset from
// the input's height as its converted absolute
// lock-time. We subtract one from the relative lock in
// order to maintain the original lockTime semantics.
blockHeight := inputHeight + int32(relativeLock-1)
if blockHeight > sequenceLock.BlockHeight {
sequenceLock.BlockHeight = blockHeight
}
}
}
return sequenceLock, nil
}
// LockTimeToSequence converts the passed relative locktime to a sequence
// number in accordance to BIP-68.
// See: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
// * (Compatibility)
func LockTimeToSequence(isSeconds bool, locktime uint64) uint64 {
// If we're expressing the relative lock time in blocks, then the
// corresponding sequence number is simply the desired input age.
if !isSeconds {
return locktime
}
// Set the 22nd bit which indicates the lock time is in seconds, then
// shift the locktime over by 9 since the time granularity is in
// 512-second intervals (2^9). This results in a max lock-time of
// 33,553,920 seconds, or 1.1 years.
return wire.SequenceLockTimeIsSeconds |
locktime>>wire.SequenceLockTimeGranularity
}
// connectToDAG handles connecting the passed block to the DAG.
//
// The flags modify the behavior of this function as follows:
// - BFFastAdd: Avoids several expensive transaction validation operations.
// This is useful when using checkpoints.
//
// This function MUST be called with the chain state lock held (for writes).
func (dag *BlockDAG) connectToDAG(node *blockNode, parentNodes blockSet, block *util.Block, flags BehaviorFlags) error {
// Skip checks if node has already been fully validated.
fastAdd := flags&BFFastAdd == BFFastAdd || dag.index.NodeStatus(node).KnownValid()
// Connect the block to the DAG.
err := dag.connectBlock(node, block, fastAdd)
if err != nil {
if _, ok := err.(RuleError); ok {
dag.index.SetStatusFlags(node, statusValidateFailed)
} else {
return err
}
} else {
dag.blockCount++
}
// Intentionally ignore errors writing updated node status to DB. If
// it fails to write, it's not the end of the world. If the block is
// invalid, the worst that can happen is we revalidate the block
// after a restart.
if writeErr := dag.index.flushToDB(); writeErr != nil {
log.Warnf("Error flushing block index changes to disk: %s",
writeErr)
}
// If dag.connectBlock returned a rule error, return it here after updating DB
if err != nil {
return err
}
return nil
}
// connectBlock handles connecting the passed node/block to the DAG.
//
// This function MUST be called with the chain state lock held (for writes).
func (dag *BlockDAG) connectBlock(node *blockNode, block *util.Block, fastAdd bool) error {
// No warnings about unknown rules or versions until the DAG is
// current.
if dag.isCurrent() {
// Warn if any unknown new rules are either about to activate or
// have already been activated.
if err := dag.warnUnknownRuleActivations(node); err != nil {
return err
}
// Warn if a high enough percentage of the last blocks have
// unexpected versions.
if err := dag.warnUnknownVersions(node); err != nil {
return err
}
}
var newFinalityPoint *blockNode
var err error
newFinalityPoint, err = dag.checkFinalityRulesAndGetFinalityPoint(node)
if err != nil {
return err
}
if err := dag.validateGasLimit(block); err != nil {
return err
}
// Add the node to the virtual and update the UTXO set of the DAG.
utxoDiff, txsAcceptanceData, feeData, err := dag.applyUTXOChanges(node, block, fastAdd)
if err != nil {
return err
}
dag.lastFinalityPoint = newFinalityPoint
// Write any block status changes to DB before updating the DAG state.
err = dag.index.flushToDB()
if err != nil {
return err
}
err = dag.saveChangesFromBlock(node, block, utxoDiff, txsAcceptanceData, feeData)
if err != nil {
return err
}
// Notify the caller that the block was connected to the DAG.
// The caller would typically want to react with actions such as
// updating wallets.
dag.dagLock.Unlock()
dag.sendNotification(NTBlockConnected, block)
dag.dagLock.Lock()
return nil
}
func (dag *BlockDAG) saveChangesFromBlock(node *blockNode, block *util.Block, utxoDiff *UTXODiff,
txsAcceptanceData MultiblockTxsAcceptanceData, feeData compactFeeData) error {
// Atomically insert info into the database.
return dag.db.Update(func(dbTx database.Tx) error {
// Update best block state.
state := &dagState{
TipHashes: dag.TipHashes(),
LastFinalityPoint: dag.lastFinalityPoint.hash,
}
err := dbPutDAGState(dbTx, state)
if err != nil {
return err
}
// Add the block hash and height to the block index which tracks
// the main chain.
err = dbPutBlockIndex(dbTx, block.Hash(), node.height)
if err != nil {
return err
}
// Update the UTXO set using the diffSet that was melded into the
// full UTXO set.
err = dbPutUTXODiff(dbTx, utxoDiff)
if err != nil {
return err
}
// Scan all accepted transactions and register any subnetwork registry
// transaction. If any subnetwork registry transaction is not well-formed,
// fail the entire block.
err = registerSubnetworks(dbTx, txsAcceptanceData)
if err != nil {
return err
}
// Allow the index manager to call each of the currently active
// optional indexes with the block being connected so they can
// update themselves accordingly.
if dag.indexManager != nil {
err := dag.indexManager.ConnectBlock(dbTx, block, dag, txsAcceptanceData)
if err != nil {
return err
}
}
// Apply the fee data into the database
return dbStoreFeeData(dbTx, block.Hash(), feeData)
})
}
func (dag *BlockDAG) validateGasLimit(block *util.Block) error {
transactions := block.Transactions()
// Amount of gas consumed per sub-network shouldn't be more than the subnetwork's limit
gasUsageInAllSubnetworks := map[subnetworkid.SubnetworkID]uint64{}
for _, tx := range transactions {
msgTx := tx.MsgTx()
// In DAGCoin and Registry sub-networks all txs must have Gas = 0, and that is validated in checkTransactionSanity
// Therefore - no need to check them here.
if !msgTx.SubnetworkID.IsEqual(subnetworkid.SubnetworkIDNative) && !msgTx.SubnetworkID.IsEqual(subnetworkid.SubnetworkIDRegistry) {
gasUsageInSubnetwork := gasUsageInAllSubnetworks[msgTx.SubnetworkID]
gasUsageInSubnetwork += msgTx.Gas
if gasUsageInSubnetwork < gasUsageInAllSubnetworks[msgTx.SubnetworkID] { // protect from overflows
str := fmt.Sprintf("Block gas usage in subnetwork with ID %s has overflown", msgTx.SubnetworkID)
return ruleError(ErrInvalidGas, str)
}
gasUsageInAllSubnetworks[msgTx.SubnetworkID] = gasUsageInSubnetwork
gasLimit, err := dag.SubnetworkStore.GasLimit(&msgTx.SubnetworkID)
if err != nil {
return err
}
if gasUsageInSubnetwork > gasLimit {
str := fmt.Sprintf("Block wastes too much gas in subnetwork with ID %s", msgTx.SubnetworkID)
return ruleError(ErrInvalidGas, str)
}
}
}
return nil
}
// LastFinalityPointHash returns the hash of the last finality point
func (dag *BlockDAG) LastFinalityPointHash() *daghash.Hash {
if dag.lastFinalityPoint == nil {
return nil
}
return &dag.lastFinalityPoint.hash
}
// checkFinalityRulesAndGetFinalityPoint checks the new block does not violate the finality rules
// and if not - returns the (potentially new) finality point
func (dag *BlockDAG) checkFinalityRulesAndGetFinalityPoint(node *blockNode) (*blockNode, error) {
if node.isGenesis() {
return node, nil
}
finalityPoint := dag.lastFinalityPoint
finalityErr := ruleError(ErrFinality, "The last finality point is not in the selected chain of this block")
if node.blueScore <= dag.lastFinalityPoint.blueScore {
return nil, finalityErr
}
// We are looking for a new finality point only if the new block's finality score is higher
// than the existing finality point's
shouldFindNewFinalityPoint := node.finalityScore() > dag.lastFinalityPoint.finalityScore()
for currentNode := node.selectedParent; currentNode != dag.lastFinalityPoint; currentNode = currentNode.selectedParent {
// If we went past dag's last finality point without encountering it -
// the new block has violated finality.
if currentNode.blueScore <= dag.lastFinalityPoint.blueScore {
return nil, finalityErr
}
// If current node's finality score is higher than it's selectedParent's -
// current node is the new finalityPoint
if shouldFindNewFinalityPoint && currentNode.finalityScore() > currentNode.selectedParent.finalityScore() {
finalityPoint = currentNode
}
}
return finalityPoint, nil
}
// NextBlockFeeTransaction prepares the fee transaction for the next mined block
func (dag *BlockDAG) NextBlockFeeTransaction() (*wire.MsgTx, error) {
_, txsAcceptanceData, _, err := dag.virtual.blockNode.verifyAndBuildUTXO(dag.virtual, dag, nil, true)
if err != nil {
return nil, err
}
return dag.virtual.blockNode.buildFeeTransaction(dag, txsAcceptanceData)
}
// applyUTXOChanges does the following:
// 1. Verifies that each transaction within the new block could spend an existing UTXO.
// 2. Connects each of the new block's parents to the block.
// 3. Adds the new block to the DAG's tips.
// 4. Updates the DAG's full UTXO set.
// 5. Updates each of the tips' utxoDiff.
//
// This function MUST be called with the chain state lock held (for writes).
func (dag *BlockDAG) applyUTXOChanges(node *blockNode, block *util.Block, fastAdd bool) (
utxoDiff *UTXODiff, txsAcceptanceData MultiblockTxsAcceptanceData, feeData compactFeeData, err error) {
// Clone the virtual block so that we don't modify the existing one.
virtualClone := dag.virtual.clone()
newBlockUTXO, txsAcceptanceData, feeData, err := node.verifyAndBuildUTXO(virtualClone, dag, block.Transactions(), fastAdd)
if err != nil {
newErrString := fmt.Sprintf("error verifying UTXO for %s: %s", node, err)
if err, ok := err.(RuleError); ok {
return nil, nil, nil, ruleError(err.ErrorCode, newErrString)
}
return nil, nil, nil, errors.New(newErrString)
}
err = node.validateFeeTransaction(dag, block, txsAcceptanceData)
if err != nil {
return nil, nil, nil, err
}
// since verifyAndBuildUTXO ran, we know for sure that block is valid -
// therefore, if an error occured - this means there's some problem in the
// internal structure of block nodes, and it's irrecoverable - therefore
// panic
if err = node.updateParents(virtualClone, newBlockUTXO); err != nil {
panic(fmt.Errorf("failed updating parents of %s: %s", node, err))
}
// Update the virtual block's children (the DAG tips) to include the new block.
virtualClone.AddTip(node)
// Build a UTXO set for the new virtual block and update the DAG tips' diffs.
newVirtualUTXO, _, err := virtualClone.blockNode.pastUTXO(virtualClone, dag.db)
if err != nil {
panic(fmt.Sprintf("could not restore past UTXO for virtual %s: %s", virtualClone, err))
}
// Apply new utxoDiffs to all the tips
err = updateTipsUTXO(virtualClone.parents, virtualClone, newVirtualUTXO)
if err != nil {
panic(fmt.Sprintf("failed updating the tips' UTXO: %s", err))
}
// It is now safe to meld the UTXO set to base.
diffSet := newVirtualUTXO.(*DiffUTXOSet)
utxoDiff = diffSet.UTXODiff
dag.meldVirtualUTXO(diffSet)
// Set the status to valid for all index nodes to make sure the changes get
// written to the database.
for _, p := range node.parents {
dag.index.SetStatusFlags(p, statusValid)
}
dag.index.SetStatusFlags(node, statusValid)
// It is now safe to apply the new virtual block
dag.virtual = virtualClone
return utxoDiff, txsAcceptanceData, feeData, nil
}
func (dag *BlockDAG) meldVirtualUTXO(newVirtualUTXODiffSet *DiffUTXOSet) {
dag.utxoLock.Lock()
defer dag.utxoLock.Unlock()
newVirtualUTXODiffSet.meldToBase()
}
// verifyAndBuildUTXO verifies all transactions in the given block and builds its UTXO
func (node *blockNode) verifyAndBuildUTXO(virtual *virtualBlock, dag *BlockDAG, transactions []*util.Tx, fastAdd bool) (
UTXOSet, MultiblockTxsAcceptanceData, compactFeeData, error) {
pastUTXO, txsAcceptanceData, err := node.pastUTXO(virtual, dag.db)
if err != nil {
return nil, nil, nil, err
}
var feeData compactFeeData
feeData, err = dag.checkConnectToPastUTXO(node, pastUTXO, transactions, fastAdd)
if err != nil {
return nil, nil, nil, err
}
diff := NewUTXODiff()
blockTxsAcceptanceData := BlockTxsAcceptanceData{}
for _, tx := range transactions {
txDiff, err := pastUTXO.diffFromTx(tx.MsgTx(), node)
if err != nil {
return nil, nil, nil, err
}
diff, err = diff.WithDiff(txDiff)
if err != nil {
return nil, nil, nil, err
}
blockTxsAcceptanceData = append(blockTxsAcceptanceData, TxAcceptanceData{
Tx: tx,
IsAccepted: true,
})
}
txsAcceptanceData[node.hash] = blockTxsAcceptanceData
utxo, err := pastUTXO.WithDiff(diff)
if err != nil {
return nil, nil, nil, err
}
return utxo, txsAcceptanceData, feeData, nil
}
// TxAcceptanceData stores a transaction together with an indication
// if it was accepted or not by some block
type TxAcceptanceData struct {
Tx *util.Tx
IsAccepted bool
}
// BlockTxsAcceptanceData stores all transactions in a block with an indication
// if they were accepted or not by some other block
type BlockTxsAcceptanceData []TxAcceptanceData
// MultiblockTxsAcceptanceData stores data about which transactions were accepted by a block
// It's a map from the block's blues block IDs to the transaction acceptance data
type MultiblockTxsAcceptanceData map[daghash.Hash]BlockTxsAcceptanceData
func genesisPastUTXO(virtual *virtualBlock) UTXOSet {
// The genesis has no past UTXO, so we create an empty UTXO
// set by creating a diff UTXO set with the virtual UTXO
// set, and adding all of its entries in toRemove
diff := NewUTXODiff()
for outPoint, entry := range virtual.utxoSet.utxoCollection {
diff.toRemove[outPoint] = entry
}
genesisPastUTXO := UTXOSet(NewDiffUTXOSet(virtual.utxoSet, diff))
return genesisPastUTXO
}
// pastUTXO returns the UTXO of a given block's past
func (node *blockNode) pastUTXO(virtual *virtualBlock, db database.DB) (pastUTXO UTXOSet, txsAcceptanceData MultiblockTxsAcceptanceData, err error) {
if node.isGenesis() {
return genesisPastUTXO(virtual), MultiblockTxsAcceptanceData{}, nil
}
pastUTXO, err = node.selectedParent.restoreUTXO(virtual)
if err != nil {
return nil, nil, err
}
// Fetch from the database all the transactions for this block's blue set
blueBlocks := make([]*util.Block, 0, len(node.blues))
err = db.View(func(dbTx database.Tx) error {
// Precalculate the amount of transactions in this block's blue set, besides the selected parent.
// This is to avoid an attack in which an attacker fabricates a block that will deliberately cause
// a lot of copying, causing a high cost to the whole network.
for i := len(node.blues) - 1; i >= 0; i-- {
blueBlockNode := node.blues[i]
blueBlock, err := dbFetchBlockByNode(dbTx, blueBlockNode)
if err != nil {
return err
}
blueBlocks = append(blueBlocks, blueBlock)
}
return nil
})
if err != nil {
return nil, nil, err
}
txsAcceptanceData = MultiblockTxsAcceptanceData{}
// Add all transactions to the pastUTXO
// Purposefully ignore failures - these are just unaccepted transactions
// Write down which transactions were accepted or not in acceptedTxData
for _, blueBlock := range blueBlocks {
transactions := blueBlock.Transactions()
blockTxsAcceptanceData := make(BlockTxsAcceptanceData, len(transactions))
isSelectedParent := blueBlock.Hash().IsEqual(&node.selectedParent.hash)
for i, tx := range blueBlock.Transactions() {
var isAccepted bool
if isSelectedParent {
isAccepted = true
} else {
isAccepted = pastUTXO.AddTx(tx.MsgTx(), node.height)
}
blockTxsAcceptanceData[i] = TxAcceptanceData{Tx: tx, IsAccepted: isAccepted}
}
txsAcceptanceData[*blueBlock.Hash()] = blockTxsAcceptanceData
}
return pastUTXO, txsAcceptanceData, nil
}
// restoreUTXO restores the UTXO of a given block from its diff
func (node *blockNode) restoreUTXO(virtual *virtualBlock) (UTXOSet, error) {
stack := []*blockNode{node}
current := node
for current.diffChild != nil {
current = current.diffChild
stack = append(stack, current)
}
utxo := UTXOSet(virtual.utxoSet)
var err error
for i := len(stack) - 1; i >= 0; i-- {
utxo, err = utxo.WithDiff(stack[i].diff)
if err != nil {
return nil, err
}
}
return utxo, nil
}
// updateParents adds this block to the children sets of its parents
// and updates the diff of any parent whose DiffChild is this block
func (node *blockNode) updateParents(virtual *virtualBlock, newBlockUTXO UTXOSet) error {
virtualDiffFromNewBlock, err := virtual.utxoSet.diffFrom(newBlockUTXO)
if err != nil {
return err
}
node.diff = virtualDiffFromNewBlock
for _, parent := range node.parents {
if parent.diffChild == nil {
parentUTXO, err := parent.restoreUTXO(virtual)
if err != nil {
return err
}
parent.diffChild = node
parent.diff, err = newBlockUTXO.diffFrom(parentUTXO)
if err != nil {
return err
}
}
}
return nil
}
// updateTipsUTXO builds and applies new diff UTXOs for all the DAG's tips
func updateTipsUTXO(tips blockSet, virtual *virtualBlock, virtualUTXO UTXOSet) error {
for _, tip := range tips {
tipUTXO, err := tip.restoreUTXO(virtual)
if err != nil {
return err
}
tip.diff, err = virtualUTXO.diffFrom(tipUTXO)
if err != nil {
return err
}
}
return nil
}
// isCurrent returns whether or not the chain believes it is current. Several
// factors are used to guess, but the key factors that allow the chain to
// believe it is current are:
// - Latest block height is after the latest checkpoint (if enabled)
// - Latest block has a timestamp newer than 24 hours ago
//
// This function MUST be called with the chain state lock held (for reads).
func (dag *BlockDAG) isCurrent() bool {
// Not current if the virtual's selected tip height is less than
// the latest known good checkpoint (when checkpoints are enabled).
checkpoint := dag.LatestCheckpoint()
if checkpoint != nil && dag.selectedTip().height < checkpoint.Height {
return false
}
// Not current if the virtual's selected parent has a timestamp
// before 24 hours ago. If the DAG is empty, we take the genesis
// block timestamp.
//
// The DAG appears to be current if none of the checks reported
// otherwise.
var dagTimestamp int64
selectedTip := dag.selectedTip()
if selectedTip == nil {
dagTimestamp = dag.dagParams.GenesisBlock.Header.Timestamp.Unix()
} else {
dagTimestamp = selectedTip.timestamp
}
minus24Hours := dag.timeSource.AdjustedTime().Add(-24 * time.Hour).Unix()
return dagTimestamp >= minus24Hours
}
// IsCurrent returns whether or not the chain believes it is current. Several
// factors are used to guess, but the key factors that allow the chain to
// believe it is current are:
// - Latest block height is after the latest checkpoint (if enabled)
// - Latest block has a timestamp newer than 24 hours ago
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsCurrent() bool {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.isCurrent()
}
// selectedTip returns the current selected tip for the DAG.
// It will return nil if there is no tip.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) selectedTip() *blockNode {
return dag.virtual.selectedParent
}
// SelectedTipHeader returns the header of the current selected tip for the DAG.
// It will return nil if there is no tip.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) SelectedTipHeader() *wire.BlockHeader {
selectedTip := dag.selectedTip()
if selectedTip == nil {
return nil
}
return selectedTip.Header()
}
// UTXOSet returns the DAG's UTXO set
func (dag *BlockDAG) UTXOSet() *FullUTXOSet {
return dag.virtual.utxoSet
}
// CalcPastMedianTime returns the past median time of the DAG.
func (dag *BlockDAG) CalcPastMedianTime() time.Time {
return dag.virtual.tips().bluest().PastMedianTime()
}
// GetUTXOEntry returns the requested unspent transaction output. The returned
// instance must be treated as immutable since it is shared by all callers.
//
// This function is safe for concurrent access. However, the returned entry (if
// any) is NOT.
func (dag *BlockDAG) GetUTXOEntry(outPoint wire.OutPoint) (*UTXOEntry, bool) {
return dag.virtual.utxoSet.get(outPoint)
}
// IsInSelectedPathChain returns whether or not a block hash is found in the selected path
func (dag *BlockDAG) IsInSelectedPathChain(blockHash *daghash.Hash) bool {
return dag.virtual.selectedPathChainSet.containsHash(blockHash)
}
// Height returns the height of the highest tip in the DAG
func (dag *BlockDAG) Height() int32 {
return dag.virtual.tips().maxHeight()
}
// BlockCount returns the number of blocks in the DAG
func (dag *BlockDAG) BlockCount() uint64 {
return dag.blockCount
}
// TipHashes returns the hashes of the DAG's tips
func (dag *BlockDAG) TipHashes() []daghash.Hash {
return dag.virtual.tips().hashes()
}
// HighestTipHash returns the hash of the highest tip.
// This function is a placeholder for places that aren't DAG-compatible, and it's needed to be removed in the future
func (dag *BlockDAG) HighestTipHash() daghash.Hash {
return dag.virtual.tips().highest().hash
}
// CurrentBits returns the bits of the tip with the lowest bits, which also means it has highest difficulty.
func (dag *BlockDAG) CurrentBits() uint32 {
tips := dag.virtual.tips()
minBits := uint32(math.MaxUint32)
for _, tip := range tips {
if minBits > tip.Header().Bits {
minBits = tip.Header().Bits
}
}
return minBits
}
// HeaderByHash returns the block header identified by the given hash or an
// error if it doesn't exist.
func (dag *BlockDAG) HeaderByHash(hash *daghash.Hash) (*wire.BlockHeader, error) {
node := dag.index.LookupNode(hash)
if node == nil {
err := fmt.Errorf("block %s is not known", hash)
return &wire.BlockHeader{}, err
}
return node.Header(), nil
}
// BlockLocatorFromHash returns a block locator for the passed block hash.
// See BlockLocator for details on the algorithm used to create a block locator.
//
// In addition to the general algorithm referenced above, this function will
// return the block locator for the latest known tip of the main (best) chain if
// the passed hash is not currently known.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) BlockLocatorFromHash(hash *daghash.Hash) BlockLocator {
dag.dagLock.RLock()
node := dag.index.LookupNode(hash)
locator := dag.blockLocator(node)
dag.dagLock.RUnlock()
return locator
}
// LatestBlockLocator returns a block locator for the latest known tip of the
// main (best) chain.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) LatestBlockLocator() (BlockLocator, error) {
dag.dagLock.RLock()
locator := dag.blockLocator(nil)
dag.dagLock.RUnlock()
return locator, nil
}
// blockLocator returns a block locator for the passed block node. The passed
// node can be nil in which case the block locator for the current tip
// associated with the view will be returned.
//
// See the BlockLocator type comments for more details.
//
// This function MUST be called with the chain state lock held (for reads).
func (dag *BlockDAG) blockLocator(node *blockNode) BlockLocator {
// Use the selected tip if requested.
if node == nil {
node = dag.virtual.selectedParent
}
if node == nil {
return nil
}
// Calculate the max number of entries that will ultimately be in the
// block locator. See the description of the algorithm for how these
// numbers are derived.
var maxEntries uint8
if node.height <= 12 {
maxEntries = uint8(node.height) + 1
} else {
// Requested hash itself + previous 10 entries + genesis block.
// Then floor(log2(height-10)) entries for the skip portion.
adjustedHeight := uint32(node.height) - 10
maxEntries = 12 + util.FastLog2Floor(adjustedHeight)
}
locator := make(BlockLocator, 0, maxEntries)
step := int32(1)
for node != nil {
locator = append(locator, &node.hash)
// Nothing more to add once the genesis block has been added.
if node.height == 0 {
break
}
// Calculate height of previous node to include ensuring the
// final node is the genesis block.
height := node.height - step
if height < 0 {
height = 0
}
// walk backwards through the nodes to the correct ancestor.
node = node.Ancestor(height)
// Once 11 entries have been included, start doubling the
// distance between included hashes.
if len(locator) > 10 {
step *= 2
}
}
return locator
}
// BlockHeightByHash returns the height of the block with the given hash in the
// DAG.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) BlockHeightByHash(hash *daghash.Hash) (int32, error) {
node := dag.index.LookupNode(hash)
if node == nil {
str := fmt.Sprintf("block %s is not in the DAG", hash)
return 0, errNotInDAG(str)
}
return node.height, nil
}
// ChildHashesByHash returns the child hashes of the block with the given hash in the
// DAG.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) ChildHashesByHash(hash *daghash.Hash) ([]daghash.Hash, error) {
node := dag.index.LookupNode(hash)
if node == nil {
str := fmt.Sprintf("block %s is not in the DAG", hash)
return nil, errNotInDAG(str)
}
return node.children.hashes(), nil
}
// HeightToHashRange returns a range of block hashes for the given start height
// and end hash, inclusive on both ends. The hashes are for all blocks that are
// ancestors of endHash with height greater than or equal to startHeight. The
// end hash must belong to a block that is known to be valid.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) HeightToHashRange(startHeight int32,
endHash *daghash.Hash, maxResults int) ([]daghash.Hash, error) {
endNode := dag.index.LookupNode(endHash)
if endNode == nil {
return nil, fmt.Errorf("no known block header with hash %s", endHash)
}
if !dag.index.NodeStatus(endNode).KnownValid() {
return nil, fmt.Errorf("block %s is not yet validated", endHash)
}
endHeight := endNode.height
if startHeight < 0 {
return nil, fmt.Errorf("start height (%d) is below 0", startHeight)
}
if startHeight > endHeight {
return nil, fmt.Errorf("start height (%d) is past end height (%d)",
startHeight, endHeight)
}
resultsLength := int(endHeight - startHeight + 1)
if resultsLength > maxResults {
return nil, fmt.Errorf("number of results (%d) would exceed max (%d)",
resultsLength, maxResults)
}
// Walk backwards from endHeight to startHeight, collecting block hashes.
node := endNode
hashes := make([]daghash.Hash, resultsLength)
for i := resultsLength - 1; i >= 0; i-- {
hashes[i] = node.hash
node = node.selectedParent
}
return hashes, nil
}
// IntervalBlockHashes returns hashes for all blocks that are ancestors of
// endHash where the block height is a positive multiple of interval.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IntervalBlockHashes(endHash *daghash.Hash, interval int,
) ([]daghash.Hash, error) {
endNode := dag.index.LookupNode(endHash)
if endNode == nil {
return nil, fmt.Errorf("no known block header with hash %s", endHash)
}
if !dag.index.NodeStatus(endNode).KnownValid() {
return nil, fmt.Errorf("block %s is not yet validated", endHash)
}
endHeight := endNode.height
resultsLength := int(endHeight) / interval
hashes := make([]daghash.Hash, resultsLength)
dag.virtual.mtx.Lock()
defer dag.virtual.mtx.Unlock()
blockNode := endNode
for index := int(endHeight) / interval; index > 0; index-- {
blockHeight := int32(index * interval)
blockNode = blockNode.Ancestor(blockHeight)
hashes[index-1] = blockNode.hash
}
return hashes, nil
}
// locateInventory returns the node of the block after the first known block in
// the locator along with the number of subsequent nodes needed to either reach
// the provided stop hash or the provided max number of entries.
//
// In addition, there are two special cases:
//
// - When no locators are provided, the stop hash is treated as a request for
// that block, so it will either return the node associated with the stop hash
// if it is known, or nil if it is unknown
// - When locators are provided, but none of them are known, nodes starting
// after the genesis block will be returned
//
// This is primarily a helper function for the locateBlocks and locateHeaders
// functions.
//
// This function MUST be called with the chain state lock held (for reads).
func (dag *BlockDAG) locateInventory(locator BlockLocator, hashStop *daghash.Hash, maxEntries uint32) (*blockNode, uint32) {
// There are no block locators so a specific block is being requested
// as identified by the stop hash.
stopNode := dag.index.LookupNode(hashStop)
if len(locator) == 0 {
if stopNode == nil {
// No blocks with the stop hash were found so there is
// nothing to do.
return nil, 0
}
return stopNode, 1
}
// Find the most recent locator block hash in the main chain. In the
// case none of the hashes in the locator are in the main chain, fall
// back to the genesis block.
startNode := dag.genesis
for _, hash := range locator {
node := dag.index.LookupNode(hash)
if node != nil {
startNode = node
break
}
}
// Start at the block after the most recently known block. When there
// is no next block it means the most recently known block is the tip of
// the best chain, so there is nothing more to do.
startNode = startNode.diffChild
if startNode == nil {
return nil, 0
}
// Calculate how many entries are needed.
total := uint32((dag.selectedTip().height - startNode.height) + 1)
if stopNode != nil && stopNode.height >= startNode.height {
total = uint32((stopNode.height - startNode.height) + 1)
}
if total > maxEntries {
total = maxEntries
}
return startNode, total
}
// locateBlocks returns the hashes of the blocks after the first known block in
// the locator until the provided stop hash is reached, or up to the provided
// max number of block hashes.
//
// See the comment on the exported function for more details on special cases.
//
// This function MUST be called with the chain state lock held (for reads).
func (dag *BlockDAG) locateBlocks(locator BlockLocator, hashStop *daghash.Hash, maxHashes uint32) []daghash.Hash {
// Find the node after the first known block in the locator and the
// total number of nodes after it needed while respecting the stop hash
// and max entries.
node, total := dag.locateInventory(locator, hashStop, maxHashes)
if total == 0 {
return nil
}
// Populate and return the found hashes.
hashes := make([]daghash.Hash, 0, total)
for i := uint32(0); i < total; i++ {
hashes = append(hashes, node.hash)
node = node.diffChild
}
return hashes
}
// LocateBlocks returns the hashes of the blocks after the first known block in
// the locator until the provided stop hash is reached, or up to the provided
// max number of block hashes.
//
// In addition, there are two special cases:
//
// - When no locators are provided, the stop hash is treated as a request for
// that block, so it will either return the stop hash itself if it is known,
// or nil if it is unknown
// - When locators are provided, but none of them are known, hashes starting
// after the genesis block will be returned
//
// This function is safe for concurrent access.
func (dag *BlockDAG) LocateBlocks(locator BlockLocator, hashStop *daghash.Hash, maxHashes uint32) []daghash.Hash {
dag.dagLock.RLock()
hashes := dag.locateBlocks(locator, hashStop, maxHashes)
dag.dagLock.RUnlock()
return hashes
}
// locateHeaders returns the headers of the blocks after the first known block
// in the locator until the provided stop hash is reached, or up to the provided
// max number of block headers.
//
// See the comment on the exported function for more details on special cases.
//
// This function MUST be called with the chain state lock held (for reads).
func (dag *BlockDAG) locateHeaders(locator BlockLocator, hashStop *daghash.Hash, maxHeaders uint32) []*wire.BlockHeader {
// Find the node after the first known block in the locator and the
// total number of nodes after it needed while respecting the stop hash
// and max entries.
node, total := dag.locateInventory(locator, hashStop, maxHeaders)
if total == 0 {
return nil
}
// Populate and return the found headers.
headers := make([]*wire.BlockHeader, 0, total)
for i := uint32(0); i < total; i++ {
headers = append(headers, node.Header())
node = node.diffChild
}
return headers
}
// UTXORLock locks the DAG's UTXO set for reading.
func (dag *BlockDAG) UTXORLock() {
dag.dagLock.RLock()
}
// UTXORUnlock unlocks the DAG's UTXO set for reading.
func (dag *BlockDAG) UTXORUnlock() {
dag.dagLock.RUnlock()
}
// LocateHeaders returns the headers of the blocks after the first known block
// in the locator until the provided stop hash is reached, or up to a max of
// wire.MaxBlockHeadersPerMsg headers.
//
// In addition, there are two special cases:
//
// - When no locators are provided, the stop hash is treated as a request for
// that header, so it will either return the header for the stop hash itself
// if it is known, or nil if it is unknown
// - When locators are provided, but none of them are known, headers starting
// after the genesis block will be returned
//
// This function is safe for concurrent access.
func (dag *BlockDAG) LocateHeaders(locator BlockLocator, hashStop *daghash.Hash) []*wire.BlockHeader {
dag.dagLock.RLock()
headers := dag.locateHeaders(locator, hashStop, wire.MaxBlockHeadersPerMsg)
dag.dagLock.RUnlock()
return headers
}
// SubnetworkID returns the node's subnetwork ID
func (dag *BlockDAG) SubnetworkID() *subnetworkid.SubnetworkID {
return dag.subnetworkID
}
// IndexManager provides a generic interface that is called when blocks are
// connected and disconnected to and from the tip of the main chain for the
// purpose of supporting optional indexes.
type IndexManager interface {
// Init is invoked during chain initialize in order to allow the index
// manager to initialize itself and any indexes it is managing. The
// channel parameter specifies a channel the caller can close to signal
// that the process should be interrupted. It can be nil if that
// behavior is not desired.
Init(database.DB, *BlockDAG, <-chan struct{}) error
// ConnectBlock is invoked when a new block has been connected to the
// DAG.
ConnectBlock(database.Tx, *util.Block, *BlockDAG, MultiblockTxsAcceptanceData) error
}
// Config is a descriptor which specifies the blockchain instance configuration.
type Config struct {
// DB defines the database which houses the blocks and will be used to
// store all metadata created by this package such as the utxo set.
//
// This field is required.
DB database.DB
// Interrupt specifies a channel the caller can close to signal that
// long running operations, such as catching up indexes or performing
// database migrations, should be interrupted.
//
// This field can be nil if the caller does not desire the behavior.
Interrupt <-chan struct{}
// DAGParams identifies which DAG parameters the DAG is associated
// with.
//
// This field is required.
DAGParams *dagconfig.Params
// Checkpoints hold caller-defined checkpoints that should be added to
// the default checkpoints in DAGParams. Checkpoints must be sorted
// by height.
//
// This field can be nil if the caller does not wish to specify any
// checkpoints.
Checkpoints []dagconfig.Checkpoint
// TimeSource defines the median time source to use for things such as
// block processing and determining whether or not the chain is current.
//
// The caller is expected to keep a reference to the time source as well
// and add time samples from other peers on the network so the local
// time is adjusted to be in agreement with other peers.
TimeSource MedianTimeSource
// SigCache defines a signature cache to use when when validating
// signatures. This is typically most useful when individual
// transactions are already being validated prior to their inclusion in
// a block such as what is usually done via a transaction memory pool.
//
// This field can be nil if the caller is not interested in using a
// signature cache.
SigCache *txscript.SigCache
// IndexManager defines an index manager to use when initializing the
// chain and connecting and disconnecting blocks.
//
// This field can be nil if the caller does not wish to make use of an
// index manager.
IndexManager IndexManager
// SubnetworkID identifies which subnetwork the DAG is associated
// with.
//
// This field is required.
SubnetworkID *subnetworkid.SubnetworkID
}
// New returns a BlockDAG instance using the provided configuration details.
func New(config *Config) (*BlockDAG, error) {
// Enforce required config fields.
if config.DB == nil {
return nil, AssertError("BlockDAG.New database is nil")
}
if config.DAGParams == nil {
return nil, AssertError("BlockDAG.New DAG parameters nil")
}
if config.TimeSource == nil {
return nil, AssertError("BlockDAG.New timesource is nil")
}
if config.SubnetworkID == nil {
return nil, AssertError("BlockDAG.New subnetworkID is nil")
}
// Generate a checkpoint by height map from the provided checkpoints
// and assert the provided checkpoints are sorted by height as required.
var checkpointsByHeight map[int32]*dagconfig.Checkpoint
var prevCheckpointHeight int32
if len(config.Checkpoints) > 0 {
checkpointsByHeight = make(map[int32]*dagconfig.Checkpoint)
for i := range config.Checkpoints {
checkpoint := &config.Checkpoints[i]
if checkpoint.Height <= prevCheckpointHeight {
return nil, AssertError("blockdag.New " +
"checkpoints are not sorted by height")
}
checkpointsByHeight[checkpoint.Height] = checkpoint
prevCheckpointHeight = checkpoint.Height
}
}
params := config.DAGParams
targetTimespan := int64(params.TargetTimespan / time.Second)
targetTimePerBlock := int64(params.TargetTimePerBlock / time.Second)
adjustmentFactor := params.RetargetAdjustmentFactor
index := newBlockIndex(config.DB, params)
dag := BlockDAG{
checkpoints: config.Checkpoints,
checkpointsByHeight: checkpointsByHeight,
db: config.DB,
dagParams: params,
timeSource: config.TimeSource,
sigCache: config.SigCache,
indexManager: config.IndexManager,
minRetargetTimespan: targetTimespan / adjustmentFactor,
maxRetargetTimespan: targetTimespan * adjustmentFactor,
blocksPerRetarget: int32(targetTimespan / targetTimePerBlock),
index: index,
virtual: newVirtualBlock(nil, params.K),
orphans: make(map[daghash.Hash]*orphanBlock),
prevOrphans: make(map[daghash.Hash][]*orphanBlock),
warningCaches: newThresholdCaches(vbNumBits),
deploymentCaches: newThresholdCaches(dagconfig.DefinedDeployments),
blockCount: 0,
SubnetworkStore: newSubnetworkStore(config.DB),
subnetworkID: config.SubnetworkID,
}
// Initialize the chain state from the passed database. When the db
// does not yet contain any DAG state, both it and the DAG state
// will be initialized to contain only the genesis block.
if err := dag.initDAGState(); err != nil {
return nil, err
}
// Initialize and catch up all of the currently active optional indexes
// as needed.
if config.IndexManager != nil {
err := config.IndexManager.Init(dag.db, &dag, config.Interrupt)
if err != nil {
return nil, err
}
}
genesis := index.LookupNode(params.GenesisHash)
if genesis == nil {
genesisBlock := util.NewBlock(dag.dagParams.GenesisBlock)
isOrphan, err := dag.ProcessBlock(genesisBlock, BFNone)
if err != nil {
return nil, err
}
if isOrphan {
return nil, errors.New("Genesis block is unexpectedly orphan")
}
genesis = index.LookupNode(params.GenesisHash)
}
// Save a reference to the genesis block.
dag.genesis = genesis
// Initialize rule change threshold state caches.
if err := dag.initThresholdCaches(); err != nil {
return nil, err
}
selectedTip := dag.selectedTip()
log.Infof("DAG state (height %d, hash %s, work %d)",
selectedTip.height, selectedTip.hash, selectedTip.workSum)
return &dag, nil
}