kaspad/mining/mining.go
Ori Newman f7f44995d6 [NOD-215] implement difficulty adjustment algorithm (#331)
* [NOD-215] Implement difficulty adjustment algorithm

* [NOD-215] Handle blocks with genesis parent, and fix adjustment factor calculation

* [NOD-215] Fix tests

* [NOD-215] fix calcNextRequiredDifficulty

* [NOD-215] Add TestDifficulty

* [NOD-215] Fix delay to be positive, and add tests for delayed blocks

* [NOD-215] Split calcBlockWindowMinMaxAndMedianTimestamps to two functions

* [NOD-215] Make explicit loop for padding blue block window with genesis

* [NOD-215] Name return values

* [NOD-215] Fix delay != 0 error messages

* [NOD-215] Fix comments

* [NOD-215] Fix blueBlockWindow

* [NOD-215] Add TestBlueBlockWindow

* [NOD-215] Rename PowLimit -> PowMax

* [NOD-215] Fix delay != 0 error messages

* [NOD-215] Move PowMaxBits to BlockDAG

* [NOD-215] Make blockWindow type

* [NOD-215] Make blueBlockWindow always pad with genesis

* [NOD-215] Remove redundant line in checkWindowIDs

* [NOD-215] Make medianTimestamp return error for empty window
2019-06-26 15:47:39 +03:00

672 lines
25 KiB
Go

// Copyright (c) 2014-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package mining
import (
"bytes"
"container/heap"
"encoding/binary"
"fmt"
"sort"
"time"
"github.com/daglabs/btcd/blockdag"
"github.com/daglabs/btcd/dagconfig"
"github.com/daglabs/btcd/txscript"
"github.com/daglabs/btcd/util"
"github.com/daglabs/btcd/util/daghash"
"github.com/daglabs/btcd/util/random"
"github.com/daglabs/btcd/util/subnetworkid"
"github.com/daglabs/btcd/wire"
)
const (
// blockHeaderOverhead is the max number of bytes it takes to serialize
// a block header and max possible transaction count.
blockHeaderOverhead = wire.MaxBlockHeaderPayload + wire.MaxVarIntPayload
// CoinbaseFlags is added to the coinbase script of a generated block
// and is used to monitor BIP16 support as well as blocks that are
// generated via btcd.
CoinbaseFlags = "/P2SH/btcd/"
)
// TxDesc is a descriptor about a transaction in a transaction source along with
// additional metadata.
type TxDesc struct {
// Tx is the transaction associated with the entry.
Tx *util.Tx
// Added is the time when the entry was added to the source pool.
Added time.Time
// Height is the block height when the entry was added to the the source
// pool.
Height uint64
// Fee is the total fee the transaction associated with the entry pays.
Fee uint64
// FeePerKB is the fee the transaction pays in Satoshi per 1000 bytes.
FeePerKB uint64
}
// TxSource represents a source of transactions to consider for inclusion in
// new blocks.
//
// The interface contract requires that all of these methods are safe for
// concurrent access with respect to the source.
type TxSource interface {
// LastUpdated returns the last time a transaction was added to or
// removed from the source pool.
LastUpdated() time.Time
// MiningDescs returns a slice of mining descriptors for all the
// transactions in the source pool.
MiningDescs() []*TxDesc
// HaveTransaction returns whether or not the passed transaction hash
// exists in the source pool.
HaveTransaction(txID *daghash.TxID) bool
}
// txPrioItem houses a transaction along with extra information that allows the
// transaction to be prioritized and track dependencies on other transactions
// which have not been mined into a block yet.
type txPrioItem struct {
tx *util.Tx
fee uint64
feePerKB uint64
}
// txPriorityQueueLessFunc describes a function that can be used as a compare
// function for a transaction priority queue (txPriorityQueue).
type txPriorityQueueLessFunc func(*txPriorityQueue, int, int) bool
// txPriorityQueue implements a priority queue of txPrioItem elements that
// supports an arbitrary compare function as defined by txPriorityQueueLessFunc.
type txPriorityQueue struct {
lessFunc txPriorityQueueLessFunc
items []*txPrioItem
}
// Len returns the number of items in the priority queue. It is part of the
// heap.Interface implementation.
func (pq *txPriorityQueue) Len() int {
return len(pq.items)
}
// Less returns whether the item in the priority queue with index i should sort
// before the item with index j by deferring to the assigned less function. It
// is part of the heap.Interface implementation.
func (pq *txPriorityQueue) Less(i, j int) bool {
return pq.lessFunc(pq, i, j)
}
// Swap swaps the items at the passed indices in the priority queue. It is
// part of the heap.Interface implementation.
func (pq *txPriorityQueue) Swap(i, j int) {
pq.items[i], pq.items[j] = pq.items[j], pq.items[i]
}
// Push pushes the passed item onto the priority queue. It is part of the
// heap.Interface implementation.
func (pq *txPriorityQueue) Push(x interface{}) {
pq.items = append(pq.items, x.(*txPrioItem))
}
// Pop removes the highest priority item (according to Less) from the priority
// queue and returns it. It is part of the heap.Interface implementation.
func (pq *txPriorityQueue) Pop() interface{} {
n := len(pq.items)
item := pq.items[n-1]
pq.items[n-1] = nil
pq.items = pq.items[0 : n-1]
return item
}
// SetLessFunc sets the compare function for the priority queue to the provided
// function. It also invokes heap.Init on the priority queue using the new
// function so it can immediately be used with heap.Push/Pop.
func (pq *txPriorityQueue) SetLessFunc(lessFunc txPriorityQueueLessFunc) {
pq.lessFunc = lessFunc
heap.Init(pq)
}
// txPQByFee sorts a txPriorityQueue by fees per kilobyte
func txPQByFee(pq *txPriorityQueue, i, j int) bool {
return pq.items[i].feePerKB > pq.items[j].feePerKB
}
// newTxPriorityQueue returns a new transaction priority queue that reserves the
// passed amount of space for the elements. The new priority queue uses the
// txPQByFee compare function and is already initialized for use with heap.Push/Pop.
// The priority queue can grow larger than the reserved space, but extra copies
// of the underlying array can be avoided by reserving a sane value.
func newTxPriorityQueue(reserve int) *txPriorityQueue {
pq := &txPriorityQueue{
items: make([]*txPrioItem, 0, reserve),
}
pq.SetLessFunc(txPQByFee)
return pq
}
// BlockTemplate houses a block that has yet to be solved along with additional
// details about the fees and the number of signature operations for each
// transaction in the block.
type BlockTemplate struct {
// Block is a block that is ready to be solved by miners. Thus, it is
// completely valid with the exception of satisfying the proof-of-work
// requirement.
Block *wire.MsgBlock
// Fees contains the amount of fees each transaction in the generated
// template pays in base units. Since the first transaction is the
// coinbase, the first entry (offset 0) will contain the negative of the
// sum of the fees of all other transactions.
Fees []uint64
// SigOpCounts contains the number of signature operations each
// transaction in the generated template performs.
SigOpCounts []int64
// Height is the height at which the block template connects to the DAG
Height uint64
// ValidPayAddress indicates whether or not the template coinbase pays
// to an address or is redeemable by anyone. See the documentation on
// NewBlockTemplate for details on which this can be useful to generate
// templates without a coinbase payment address.
ValidPayAddress bool
}
// MinimumMedianTime returns the minimum allowed timestamp for a block building
// on the end of the DAG. In particular, it is one second after
// the median timestamp of the last several blocks per the DAG consensus
// rules.
func MinimumMedianTime(dagMedianTime time.Time) time.Time {
return dagMedianTime.Add(time.Second)
}
// medianAdjustedTime returns the current time adjusted to ensure it is at least
// one second after the median timestamp of the last several blocks per the
// chain consensus rules.
func medianAdjustedTime(dagMedianTime time.Time, timeSource blockdag.MedianTimeSource) time.Time {
// The timestamp for the block must not be before the median timestamp
// of the last several blocks. Thus, choose the maximum between the
// current time and one second after the past median time. The current
// timestamp is truncated to a second boundary before comparison since a
// block timestamp does not supported a precision greater than one
// second.
newTimestamp := timeSource.AdjustedTime()
minTimestamp := MinimumMedianTime(dagMedianTime)
if newTimestamp.Before(minTimestamp) {
newTimestamp = minTimestamp
}
return newTimestamp
}
// BlkTmplGenerator provides a type that can be used to generate block templates
// based on a given mining policy and source of transactions to choose from.
// It also houses additional state required in order to ensure the templates
// are built on top of the current best chain and adhere to the consensus rules.
type BlkTmplGenerator struct {
policy *Policy
dagParams *dagconfig.Params
txSource TxSource
dag *blockdag.BlockDAG
timeSource blockdag.MedianTimeSource
sigCache *txscript.SigCache
}
// NewBlkTmplGenerator returns a new block template generator for the given
// policy using transactions from the provided transaction source.
//
// The additional state-related fields are required in order to ensure the
// templates are built on top of the current best chain and adhere to the
// consensus rules.
func NewBlkTmplGenerator(policy *Policy, params *dagconfig.Params,
txSource TxSource, dag *blockdag.BlockDAG,
timeSource blockdag.MedianTimeSource,
sigCache *txscript.SigCache) *BlkTmplGenerator {
return &BlkTmplGenerator{
policy: policy,
dagParams: params,
txSource: txSource,
dag: dag,
timeSource: timeSource,
sigCache: sigCache,
}
}
// NewBlockTemplate returns a new block template that is ready to be solved
// using the transactions from the passed transaction source pool and a coinbase
// that either pays to the passed address if it is not nil, or a coinbase that
// is redeemable by anyone if the passed address is nil. The nil address
// functionality is useful since there are cases such as the getblocktemplate
// RPC where external mining software is responsible for creating their own
// coinbase which will replace the one generated for the block template. Thus
// the need to have configured address can be avoided.
//
// The transactions selected and included are prioritized according to several
// factors. First, each transaction has a priority calculated based on its
// value, age of inputs, and size. Transactions which consist of larger
// amounts, older inputs, and small sizes have the highest priority. Second, a
// fee per kilobyte is calculated for each transaction. Transactions with a
// higher fee per kilobyte are preferred. Finally, the block generation related
// policy settings are all taken into account.
//
// Transactions which only spend outputs from other transactions already in the
// block chain are immediately added to a priority queue which either
// prioritizes based on the priority (then fee per kilobyte) or the fee per
// kilobyte (then priority) depending on whether or not the BlockPrioritySize
// policy setting allots space for high-priority transactions. Transactions
// which spend outputs from other transactions in the source pool are added to a
// dependency map so they can be added to the priority queue once the
// transactions they depend on have been included.
//
// Once the high-priority area (if configured) has been filled with
// transactions, or the priority falls below what is considered high-priority,
// the priority queue is updated to prioritize by fees per kilobyte (then
// priority).
//
// When the fees per kilobyte drop below the TxMinFreeFee policy setting, the
// transaction will be skipped unless the BlockMinSize policy setting is
// nonzero, in which case the block will be filled with the low-fee/free
// transactions until the block size reaches that minimum size.
//
// Any transactions which would cause the block to exceed the BlockMaxSize
// policy setting, exceed the maximum allowed signature operations per block, or
// otherwise cause the block to be invalid are skipped.
//
// Given the above, a block generated by this function is of the following form:
//
// ----------------------------------- -- --
// | Coinbase Transaction | | |
// |-----------------------------------| | |
// | | | | ----- policy.BlockPrioritySize
// | High-priority Transactions | | |
// | | | |
// |-----------------------------------| | --
// | | |
// | | |
// | | |--- policy.BlockMaxSize
// | Transactions prioritized by fee | |
// | until <= policy.TxMinFreeFee | |
// | | |
// | | |
// | | |
// |-----------------------------------| |
// | Low-fee/Non high-priority (free) | |
// | transactions (while block size | |
// | <= policy.BlockMinSize) | |
// ----------------------------------- --
func (g *BlkTmplGenerator) NewBlockTemplate(payToAddress util.Address) (*BlockTemplate, error) {
g.dag.RLock()
defer g.dag.RUnlock()
nextBlockBlueScore := g.dag.VirtualBlueScore()
coinbasePayloadPkScript, err := txscript.PayToAddrScript(payToAddress)
if err != nil {
return nil, err
}
extraNonce, err := random.Uint64()
if err != nil {
return nil, err
}
coinbasePayloadExtraData, err := CoinbasePayloadExtraData(extraNonce)
if err != nil {
return nil, err
}
coinbaseTx, err := g.dag.NextBlockCoinbaseTransactionNoLock(coinbasePayloadPkScript, coinbasePayloadExtraData)
if err != nil {
return nil, err
}
numCoinbaseSigOps := int64(blockdag.CountSigOps(coinbaseTx))
// Get the current source transactions and create a priority queue to
// hold the transactions which are ready for inclusion into a block
// along with some priority related and fee metadata. Reserve the same
// number of items that are available for the priority queue. Also,
// choose the initial sort order for the priority queue based on whether
// or not there is an area allocated for high-priority transactions.
sourceTxns := g.txSource.MiningDescs()
priorityQueue := newTxPriorityQueue(len(sourceTxns))
// Create a slice to hold the transactions to be included in the
// generated block with reserved space. Also create a utxo view to
// house all of the input transactions so multiple lookups can be
// avoided.
blockTxns := make([]*util.Tx, 0, len(sourceTxns)+1)
blockTxns = append(blockTxns, coinbaseTx)
// The starting block size is the size of the block header plus the max
// possible transaction count size, plus the size of the coinbase
// transaction.
blockSize := blockHeaderOverhead + uint32(coinbaseTx.MsgTx().SerializeSize())
blockSigOps := numCoinbaseSigOps
totalFees := uint64(0)
// Create slices to hold the fees and number of signature operations
// for each of the selected transactions and add an entry for the
// coinbase. This allows the code below to simply append details about
// a transaction as it is selected for inclusion in the final block.
// However, since the total fees aren't known yet, use a dummy value for
// the coinbase fee which will be updated later.
txFees := make([]uint64, 0, len(sourceTxns)+1)
txSigOpCounts := make([]int64, 0, len(sourceTxns)+1)
txFees = append(txFees, 0) // For coinbase tx
txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps)
log.Debugf("Considering %d transactions for inclusion to new block",
len(sourceTxns))
for _, txDesc := range sourceTxns {
// A block can't have more than one coinbase or contain
// non-finalized transactions.
tx := txDesc.Tx
if tx.IsCoinBase() {
log.Tracef("Skipping coinbase tx %s", tx.ID())
continue
}
if !blockdag.IsFinalizedTransaction(tx, nextBlockBlueScore,
g.timeSource.AdjustedTime()) {
log.Tracef("Skipping non-finalized tx %s", tx.ID())
continue
}
// Calculate the final transaction priority using the input
// value age sum as well as the adjusted transaction size. The
// formula is: sum(inputValue * inputAge) / adjustedTxSize
prioItem := &txPrioItem{tx: tx}
// Calculate the fee in Satoshi/kB.
prioItem.feePerKB = txDesc.FeePerKB
prioItem.fee = txDesc.Fee
heap.Push(priorityQueue, prioItem)
}
// Create map of GAS usage per subnetwork
gasUsageMap := make(map[subnetworkid.SubnetworkID]uint64)
// Choose which transactions make it into the block.
for priorityQueue.Len() > 0 {
// Grab the highest priority (or highest fee per kilobyte
// depending on the sort order) transaction.
prioItem := heap.Pop(priorityQueue).(*txPrioItem)
tx := prioItem.tx
if !tx.MsgTx().SubnetworkID.IsEqual(subnetworkid.SubnetworkIDNative) && !tx.MsgTx().SubnetworkID.IsBuiltIn() {
subnetworkID := tx.MsgTx().SubnetworkID
gasUsage, ok := gasUsageMap[subnetworkID]
if !ok {
gasUsage = 0
}
gasLimit, err := g.dag.SubnetworkStore.GasLimit(&subnetworkID)
if err != nil {
log.Errorf("Cannot get GAS limit for subnetwork %s", subnetworkID)
continue
}
txGas := tx.MsgTx().Gas
if gasLimit-gasUsage < txGas {
log.Tracef("Transaction %s (GAS=%d) ignored because gas overusage (GASUsage=%d) in subnetwork %s (GASLimit=%d)",
tx.MsgTx().TxID(), txGas, gasUsage, subnetworkID, gasLimit)
continue
}
gasUsageMap[subnetworkID] = gasUsage + txGas
}
// Enforce maximum block size. Also check for overflow.
txSize := uint32(tx.MsgTx().SerializeSize())
blockPlusTxSize := blockSize + txSize
if blockPlusTxSize < blockSize ||
blockPlusTxSize >= g.policy.BlockMaxSize {
log.Tracef("Skipping tx %s because it would exceed "+
"the max block size", tx.ID())
continue
}
// Enforce maximum signature operations per block. Also check
// for overflow.
numSigOps := int64(blockdag.CountSigOps(tx))
if blockSigOps+numSigOps < blockSigOps ||
blockSigOps+numSigOps > blockdag.MaxSigOpsPerBlock {
log.Tracef("Skipping tx %s because it would exceed "+
"the maximum sigops per block", tx.ID())
continue
}
numP2SHSigOps, err := blockdag.CountP2SHSigOps(tx, false,
g.dag.UTXOSet())
if err != nil {
log.Tracef("Skipping tx %s due to error in "+
"GetSigOpCost: %s", tx.ID(), err)
continue
}
numSigOps += int64(numP2SHSigOps)
if blockSigOps+numSigOps < blockSigOps ||
blockSigOps+numSigOps > blockdag.MaxSigOpsPerBlock {
log.Tracef("Skipping tx %s because it would "+
"exceed the maximum sigops per block", tx.ID())
continue
}
// Ensure the transaction inputs pass all of the necessary
// preconditions before allowing it to be added to the block.
_, err = blockdag.CheckTransactionInputsAndCalulateFee(tx, nextBlockBlueScore,
g.dag.UTXOSet(), g.dagParams, false)
if err != nil {
log.Tracef("Skipping tx %s due to error in "+
"CheckTransactionInputs: %s", tx.ID(), err)
continue
}
err = blockdag.ValidateTransactionScripts(tx, g.dag.UTXOSet(),
txscript.StandardVerifyFlags, g.sigCache)
if err != nil {
log.Tracef("Skipping tx %s due to error in "+
"ValidateTransactionScripts: %s", tx.ID(), err)
continue
}
// Add the transaction to the block, increment counters, and
// save the fees and signature operation counts to the block
// template.
blockTxns = append(blockTxns, tx)
blockSize += txSize
blockSigOps += int64(numSigOps)
totalFees += prioItem.fee
txFees = append(txFees, prioItem.fee)
txSigOpCounts = append(txSigOpCounts, numSigOps)
log.Tracef("Adding tx %s (feePerKB %.2f)",
prioItem.tx.ID(), prioItem.feePerKB)
}
// Now that the actual transactions have been selected, update the
// block size for the real transaction count and coinbase value with
// the total fees accordingly.
blockSize -= wire.MaxVarIntPayload -
uint32(wire.VarIntSerializeSize(uint64(len(blockTxns))))
// Calculate the required difficulty for the block. The timestamp
// is potentially adjusted to ensure it comes after the median time of
// the last several blocks per the chain consensus rules.
ts := medianAdjustedTime(g.dag.CalcPastMedianTime(), g.timeSource)
requiredDifficulty := g.dag.NextRequiredDifficulty(ts)
// Calculate the next expected block version based on the state of the
// rule change deployments.
nextBlockVersion, err := g.dag.CalcNextBlockVersion()
if err != nil {
return nil, err
}
// Sort transactions by subnetwork ID before building Merkle tree
sort.Slice(blockTxns, func(i, j int) bool {
if blockTxns[i].MsgTx().SubnetworkID.IsEqual(subnetworkid.SubnetworkIDCoinbase) {
return true
}
if blockTxns[j].MsgTx().SubnetworkID.IsEqual(subnetworkid.SubnetworkIDCoinbase) {
return false
}
return subnetworkid.Less(&blockTxns[i].MsgTx().SubnetworkID, &blockTxns[j].MsgTx().SubnetworkID)
})
// Create a new block ready to be solved.
hashMerkleTree := blockdag.BuildHashMerkleTreeStore(blockTxns)
acceptedIDMerkleRoot, err := g.dag.NextAcceptedIDMerkleRootNoLock()
if err != nil {
return nil, err
}
var msgBlock wire.MsgBlock
for _, tx := range blockTxns {
msgBlock.AddTransaction(tx.MsgTx())
}
utxoCommitment, err := g.buildUTXOCommitment(msgBlock.Transactions, nextBlockBlueScore)
if err != nil {
return nil, err
}
msgBlock.Header = wire.BlockHeader{
Version: nextBlockVersion,
ParentHashes: g.dag.TipHashes(),
HashMerkleRoot: hashMerkleTree.Root(),
AcceptedIDMerkleRoot: acceptedIDMerkleRoot,
UTXOCommitment: utxoCommitment,
Timestamp: ts,
Bits: requiredDifficulty,
}
// Finally, perform a full check on the created block against the DAG
// consensus rules to ensure it properly connects to the DAG with no
// issues.
block := util.NewBlock(&msgBlock)
if err := g.dag.CheckConnectBlockTemplateNoLock(block); err != nil {
return nil, err
}
log.Debugf("Created new block template (%d transactions, %d in fees, "+
"%d signature operations, %d bytes, target difficulty %064x)",
len(msgBlock.Transactions), totalFees, blockSigOps, blockSize,
util.CompactToBig(msgBlock.Header.Bits))
return &BlockTemplate{
Block: &msgBlock,
Fees: txFees,
SigOpCounts: txSigOpCounts,
ValidPayAddress: payToAddress != nil,
}, nil
}
// CoinbasePayloadExtraData returns coinbase payload extra data parameter
// which is built from extra nonce and coinbase flags.
func CoinbasePayloadExtraData(extraNonce uint64) ([]byte, error) {
extraNonceBytes := make([]byte, 8)
binary.LittleEndian.PutUint64(extraNonceBytes, extraNonce)
w := &bytes.Buffer{}
_, err := w.Write(extraNonceBytes)
if err != nil {
return nil, err
}
_, err = w.Write([]byte(CoinbaseFlags))
if err != nil {
return nil, err
}
return w.Bytes(), nil
}
func (g *BlkTmplGenerator) buildUTXOCommitment(transactions []*wire.MsgTx, nextBlueScore uint64) (*daghash.Hash, error) {
utxoWithTransactions, err := g.dag.UTXOSet().WithTransactions(transactions, nextBlueScore, false)
if err != nil {
return nil, err
}
return utxoWithTransactions.Multiset().Hash(), nil
}
// UpdateBlockTime updates the timestamp in the header of the passed block to
// the current time while taking into account the median time of the last
// several blocks to ensure the new time is after that time per the chain
// consensus rules. Finally, it will update the target difficulty if needed
// based on the new time for the test networks since their target difficulty can
// change based upon time.
func (g *BlkTmplGenerator) UpdateBlockTime(msgBlock *wire.MsgBlock) error {
// The new timestamp is potentially adjusted to ensure it comes after
// the median time of the last several blocks per the chain consensus
// rules.
dagMedianTime := g.dag.CalcPastMedianTime()
newTime := medianAdjustedTime(dagMedianTime, g.timeSource)
msgBlock.Header.Timestamp = newTime
return nil
}
// UpdateExtraNonce updates the extra nonce in the coinbase script of the passed
// block by regenerating the coinbase script with the passed value and block
// height. It also recalculates and updates the new merkle root that results
// from changing the coinbase script.
func (g *BlkTmplGenerator) UpdateExtraNonce(msgBlock *wire.MsgBlock, blockBlueScore uint64, extraNonce uint64) error {
coinbasePayloadPkScript, _, err := blockdag.DeserializeCoinbasePayload(msgBlock.Transactions[util.CoinbaseTransactionIndex])
if err != nil {
return err
}
coinbasePayloadExtraData, err := CoinbasePayloadExtraData(extraNonce)
if err != nil {
return err
}
coinbasePayload, err := blockdag.SerializeCoinbasePayload(coinbasePayloadPkScript, coinbasePayloadExtraData)
if err != nil {
return err
}
if len(coinbasePayload) > blockdag.MaxCoinbasePayloadLen {
return fmt.Errorf("coinbase transaction script length "+
"of %d is out of range (max: %d)",
len(coinbasePayload),
blockdag.MaxCoinbasePayloadLen)
}
oldCoinbaseTx := msgBlock.Transactions[util.CoinbaseTransactionIndex]
msgBlock.Transactions[util.CoinbaseTransactionIndex] = wire.NewSubnetworkMsgTx(oldCoinbaseTx.Version, oldCoinbaseTx.TxIn, oldCoinbaseTx.TxOut, &oldCoinbaseTx.SubnetworkID, oldCoinbaseTx.Gas, coinbasePayload)
// TODO(davec): A util.Block should use saved in the state to avoid
// recalculating all of the other transaction hashes.
// block.Transactions[util.CoinbaseTransactionIndex].InvalidateCache()
// Recalculate the merkle roots with the updated extra nonce.
block := util.NewBlock(msgBlock)
hashMerkleTree := blockdag.BuildHashMerkleTreeStore(block.Transactions())
msgBlock.Header.HashMerkleRoot = hashMerkleTree.Root()
utxoCommitment, err := g.buildUTXOCommitment(msgBlock.Transactions, blockBlueScore)
if err != nil {
return err
}
msgBlock.Header.UTXOCommitment = utxoCommitment
return nil
}
// VirtualBlueScore returns the virtual block's current blue score
func (g *BlkTmplGenerator) VirtualBlueScore() uint64 {
return g.dag.VirtualBlueScore()
}
// TipHashes returns the hashes of the DAG's tips
func (g *BlkTmplGenerator) TipHashes() []*daghash.Hash {
return g.dag.TipHashes()
}
// TxSource returns the associated transaction source.
//
// This function is safe for concurrent access.
func (g *BlkTmplGenerator) TxSource() TxSource {
return g.txSource
}