Ori Newman cf4073b773
Remove HF activation code (#2152)
* Remove HF activation code

* Remove unused var totalInputs
2022-10-02 19:17:33 +03:00

214 lines
7.1 KiB
Go

package blocktemplatebuilder
import (
"math"
"math/rand"
"sort"
consensusexternalapi "github.com/kaspanet/kaspad/domain/consensus/model/externalapi"
"github.com/kaspanet/kaspad/domain/consensus/utils/consensushashing"
"github.com/kaspanet/kaspad/domain/consensus/utils/subnetworks"
)
const (
// alpha is a coefficient that defines how uniform the distribution of
// candidate transactions should be. A smaller alpha makes the distribution
// more uniform. Alpha is used when determining a candidate transaction's
// initial p value.
alpha = 3
// rebalanceThreshold is the percentage of candidate transactions under which
// we don't rebalance. Rebalancing is a heavy operation so we prefer to avoid
// rebalancing very often. On the other hand, if we don't rebalance often enough
// we risk having too many collisions.
// The value is derived from the max probability of collision. That is to say,
// if rebalanceThreshold is 0.95, there's a 1-in-20 chance of collision.
// See selectTxs for further details.
rebalanceThreshold = 0.95
)
type selectedTransactions struct {
selectedTxs []*consensusexternalapi.DomainTransaction
txMasses []uint64
txFees []uint64
totalMass uint64
totalFees uint64
}
// selectTransactions implements a probabilistic transaction selection algorithm.
// The algorithm, roughly, is as follows:
// 1. We assign a probability to each transaction equal to:
// (candidateTx.Value^alpha) / Σ(tx.Value^alpha)
// Where the sum of the probabilities of all txs is 1.
// 2. We draw a random number in [0,1) and select a transaction accordingly.
// 3. If it's valid, add it to the selectedTxs and remove it from the candidates.
// 4. Continue iterating the above until we have either selected all
// available transactions or ran out of gas/block space.
//
// Note that we make two optimizations here:
// * Draw a number in [0,Σ(tx.Value^alpha)) to avoid normalization
// * Instead of removing a candidate after each iteration, mark it for deletion.
// Once the sum of probabilities of marked transactions is greater than
// rebalanceThreshold percent of the sum of probabilities of all transactions,
// rebalance.
// selectTransactions loops over the candidate transactions
// and appends the ones that will be included in the next block into
// txsForBlockTemplates.
// See selectTxs for further details.
func (btb *blockTemplateBuilder) selectTransactions(candidateTxs []*candidateTx) selectedTransactions {
txsForBlockTemplate := selectedTransactions{
selectedTxs: make([]*consensusexternalapi.DomainTransaction, 0, len(candidateTxs)),
txMasses: make([]uint64, 0, len(candidateTxs)),
txFees: make([]uint64, 0, len(candidateTxs)),
totalMass: 0,
totalFees: 0,
}
usedCount, usedP := 0, 0.0
candidateTxs, totalP := rebalanceCandidates(candidateTxs, true)
gasUsageMap := make(map[consensusexternalapi.DomainSubnetworkID]uint64)
markCandidateTxForDeletion := func(candidateTx *candidateTx) {
candidateTx.isMarkedForDeletion = true
usedCount++
usedP += candidateTx.p
}
selectedTxs := make([]*candidateTx, 0)
for len(candidateTxs)-usedCount > 0 {
// Rebalance the candidates if it's required
if usedP >= rebalanceThreshold*totalP {
candidateTxs, totalP = rebalanceCandidates(candidateTxs, false)
usedCount, usedP = 0, 0.0
// Break if we now ran out of transactions
if len(candidateTxs) == 0 {
break
}
}
// Select a candidate tx at random
r := rand.Float64()
r *= totalP
selectedTx := findTx(candidateTxs, r)
// If isMarkedForDeletion is set, it means we got a collision.
// Ignore and select another Tx.
if selectedTx.isMarkedForDeletion {
continue
}
tx := selectedTx.DomainTransaction
// Enforce maximum transaction mass per block. Also check
// for overflow.
if txsForBlockTemplate.totalMass+selectedTx.Mass < txsForBlockTemplate.totalMass ||
txsForBlockTemplate.totalMass+selectedTx.Mass > btb.policy.BlockMaxMass {
log.Tracef("Tx %s would exceed the max block mass. "+
"As such, stopping.", consensushashing.TransactionID(tx))
break
}
// Enforce maximum gas per subnetwork per block. Also check
// for overflow.
if !subnetworks.IsBuiltInOrNative(tx.SubnetworkID) {
subnetworkID := tx.SubnetworkID
gasUsage, ok := gasUsageMap[subnetworkID]
if !ok {
gasUsage = 0
}
txGas := tx.Gas
if gasUsage+txGas < gasUsage ||
gasUsage+txGas > selectedTx.gasLimit {
log.Tracef("Tx %s would exceed the gas limit in "+
"subnetwork %s. Removing all remaining txs from this "+
"subnetwork.",
consensushashing.TransactionID(tx), subnetworkID)
for _, candidateTx := range candidateTxs {
// candidateTxs are ordered by subnetwork, so we can safely assume
// that transactions after subnetworkID will not be relevant.
if subnetworks.Less(subnetworkID, candidateTx.SubnetworkID) {
break
}
if candidateTx.SubnetworkID == subnetworkID {
markCandidateTxForDeletion(candidateTx)
}
}
continue
}
gasUsageMap[subnetworkID] = gasUsage + txGas
}
// Add the transaction to the result, increment counters, and
// save the masses, fees, and signature operation counts to the
// result.
selectedTxs = append(selectedTxs, selectedTx)
txsForBlockTemplate.totalMass += selectedTx.Mass
txsForBlockTemplate.totalFees += selectedTx.Fee
log.Tracef("Adding tx %s (feePerMegaGram %d)",
consensushashing.TransactionID(tx), selectedTx.Fee*1e6/selectedTx.Mass)
markCandidateTxForDeletion(selectedTx)
}
sort.Slice(selectedTxs, func(i, j int) bool {
return subnetworks.Less(selectedTxs[i].SubnetworkID, selectedTxs[j].SubnetworkID)
})
for _, selectedTx := range selectedTxs {
txsForBlockTemplate.selectedTxs = append(txsForBlockTemplate.selectedTxs, selectedTx.DomainTransaction)
txsForBlockTemplate.txMasses = append(txsForBlockTemplate.txMasses, selectedTx.Mass)
txsForBlockTemplate.txFees = append(txsForBlockTemplate.txFees, selectedTx.Fee)
}
return txsForBlockTemplate
}
func rebalanceCandidates(oldCandidateTxs []*candidateTx, isFirstRun bool) (
candidateTxs []*candidateTx, totalP float64) {
totalP = 0.0
candidateTxs = make([]*candidateTx, 0, len(oldCandidateTxs))
for _, candidateTx := range oldCandidateTxs {
if candidateTx.isMarkedForDeletion {
continue
}
candidateTxs = append(candidateTxs, candidateTx)
}
for _, candidateTx := range candidateTxs {
if isFirstRun {
candidateTx.p = math.Pow(candidateTx.txValue, alpha)
}
candidateTx.start = totalP
candidateTx.end = totalP + candidateTx.p
totalP += candidateTx.p
}
return
}
// findTx finds the candidateTx in whose range r falls.
// For example, if we have candidateTxs with starts and ends:
// * tx1: start 0, end 100
// * tx2: start 100, end 105
// * tx3: start 105, end 2000
// And r=102, then findTx will return tx2.
func findTx(candidateTxs []*candidateTx, r float64) *candidateTx {
min := 0
max := len(candidateTxs) - 1
for {
i := (min + max) / 2
candidateTx := candidateTxs[i]
if candidateTx.end < r {
min = i + 1
continue
} else if candidateTx.start > r {
max = i - 1
continue
}
return candidateTx
}
}