stasatdaglabs d9b97afb92
Don't swallow errors in HandleNewBlockTransactions. (#1390)
Co-authored-by: Ori Newman <orinewman1@gmail.com>
2021-01-11 17:16:15 +02:00

924 lines
33 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package mempool
import (
"container/list"
"fmt"
"sync"
"time"
"github.com/kaspanet/kaspad/domain/consensus/utils/constants"
"github.com/kaspanet/kaspad/domain/consensus/utils/transactionhelper"
consensusexternalapi "github.com/kaspanet/kaspad/domain/consensus/model/externalapi"
"github.com/kaspanet/kaspad/domain/consensus/ruleerrors"
"github.com/kaspanet/kaspad/domain/consensus/utils/consensushashing"
"github.com/kaspanet/kaspad/domain/consensus/utils/estimatedsize"
miningmanagermodel "github.com/kaspanet/kaspad/domain/miningmanager/model"
"github.com/kaspanet/kaspad/infrastructure/logger"
"github.com/kaspanet/kaspad/util"
"github.com/kaspanet/kaspad/util/mstime"
"github.com/pkg/errors"
)
const (
// orphanTTL is the maximum amount of time an orphan is allowed to
// stay in the orphan pool before it expires and is evicted during the
// next scan.
orphanTTL = time.Minute * 15
// orphanExpireScanInterval is the minimum amount of time in between
// scans of the orphan pool to evict expired transactions.
orphanExpireScanInterval = time.Minute * 5
)
// policy houses the policy (configuration parameters) which is used to
// control the mempool.
type policy struct {
// MaxTxVersion is the transaction version that the mempool should
// accept. All transactions above this version are rejected as
// non-standard.
MaxTxVersion uint16
// AcceptNonStd defines whether to accept non-standard transactions. If
// true, non-standard transactions will be accepted into the mempool.
// Otherwise, all non-standard transactions will be rejected.
AcceptNonStd bool
// MaxOrphanTxs is the maximum number of orphan transactions
// that can be queued.
MaxOrphanTxs int
// MaxOrphanTxSize is the maximum size allowed for orphan transactions.
// This helps prevent memory exhaustion attacks from sending a lot of
// of big orphans.
MaxOrphanTxSize int
// MinRelayTxFee defines the minimum transaction fee in KAS/kB to be
// considered a non-zero fee.
MinRelayTxFee util.Amount
}
// mempool is used as a source of transactions that need to be mined into blocks
// and relayed to other peers. It is safe for concurrent access from multiple
// peers.
type mempool struct {
pool map[consensusexternalapi.DomainTransactionID]*txDescriptor
chainedTransactions map[consensusexternalapi.DomainTransactionID]*txDescriptor
chainedTransactionByPreviousOutpoint map[consensusexternalapi.DomainOutpoint]*txDescriptor
orphans map[consensusexternalapi.DomainTransactionID]*orphanTx
orphansByPrev map[consensusexternalapi.DomainOutpoint]map[consensusexternalapi.DomainTransactionID]*consensusexternalapi.DomainTransaction
mempoolUTXOSet *mempoolUTXOSet
consensus consensusexternalapi.Consensus
// nextExpireScan is the time after which the orphan pool will be
// scanned in order to evict orphans. This is NOT a hard deadline as
// the scan will only run when an orphan is added to the pool as opposed
// to on an unconditional timer.
nextExpireScan mstime.Time
mtx sync.RWMutex
policy policy
}
// New returns a new memory pool for validating and storing standalone
// transactions until they are mined into a block.
func New(consensus consensusexternalapi.Consensus, acceptNonStd bool) miningmanagermodel.Mempool {
policy := policy{
MaxTxVersion: constants.MaxTransactionVersion,
AcceptNonStd: acceptNonStd,
MaxOrphanTxs: 5,
MaxOrphanTxSize: 100000,
MinRelayTxFee: 1000, // 1 sompi per byte
}
return &mempool{
mtx: sync.RWMutex{},
policy: policy,
pool: make(map[consensusexternalapi.DomainTransactionID]*txDescriptor),
chainedTransactions: make(map[consensusexternalapi.DomainTransactionID]*txDescriptor),
chainedTransactionByPreviousOutpoint: make(map[consensusexternalapi.DomainOutpoint]*txDescriptor),
orphans: make(map[consensusexternalapi.DomainTransactionID]*orphanTx),
orphansByPrev: make(map[consensusexternalapi.DomainOutpoint]map[consensusexternalapi.DomainTransactionID]*consensusexternalapi.DomainTransaction),
mempoolUTXOSet: newMempoolUTXOSet(),
consensus: consensus,
nextExpireScan: mstime.Now().Add(orphanExpireScanInterval),
}
}
func (mp *mempool) GetTransaction(
transactionID *consensusexternalapi.DomainTransactionID) (*consensusexternalapi.DomainTransaction, bool) {
mp.mtx.RLock()
defer mp.mtx.RUnlock()
txDesc, exists := mp.fetchTxDesc(transactionID)
if !exists {
return nil, false
}
return txDesc.DomainTransaction, true
}
func (mp *mempool) AllTransactions() []*consensusexternalapi.DomainTransaction {
mp.mtx.RLock()
defer mp.mtx.RUnlock()
transactions := make([]*consensusexternalapi.DomainTransaction, 0, len(mp.pool)+len(mp.chainedTransactions))
for _, txDesc := range mp.pool {
transactions = append(transactions, txDesc.DomainTransaction)
}
for _, txDesc := range mp.chainedTransactions {
transactions = append(transactions, txDesc.DomainTransaction)
}
return transactions
}
// txDescriptor is a descriptor containing a transaction in the mempool along with
// additional metadata.
type txDescriptor struct {
*consensusexternalapi.DomainTransaction
// depCount is not 0 for a chained transaction. A chained transaction is
// one that is accepted to pool, but cannot be mined in next block because it
// depends on outputs of accepted, but still not mined transaction
depCount int
}
// orphanTx is normal transaction that references an ancestor transaction
// that is not yet available. It also contains additional information related
// to it such as an expiration time to help prevent caching the orphan forever.
type orphanTx struct {
tx *consensusexternalapi.DomainTransaction
expiration mstime.Time
}
// removeOrphan removes the passed orphan transaction from the orphan pool and
// previous orphan index.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) removeOrphan(tx *consensusexternalapi.DomainTransaction, removeRedeemers bool) {
// Nothing to do if passed tx is not an orphan.
txID := consensushashing.TransactionID(tx)
otx, exists := mp.orphans[*txID]
if !exists {
return
}
// Remove the reference from the previous orphan index.
for _, txIn := range otx.tx.Inputs {
orphans, exists := mp.orphansByPrev[txIn.PreviousOutpoint]
if exists {
delete(orphans, *txID)
// Remove the map entry altogether if there are no
// longer any orphans which depend on it.
if len(orphans) == 0 {
delete(mp.orphansByPrev, txIn.PreviousOutpoint)
}
}
}
// Remove any orphans that redeem outputs from this one if requested.
if removeRedeemers {
prevOut := consensusexternalapi.DomainOutpoint{TransactionID: *txID}
for txOutIdx := range tx.Outputs {
prevOut.Index = uint32(txOutIdx)
for _, orphan := range mp.orphansByPrev[prevOut] {
mp.removeOrphan(orphan, true)
}
}
}
// Remove the transaction from the orphan pool.
delete(mp.orphans, *txID)
}
// limitNumOrphans limits the number of orphan transactions by evicting a random
// orphan if adding a new one would cause it to overflow the max allowed.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) limitNumOrphans() error {
// Scan through the orphan pool and remove any expired orphans when it's
// time. This is done for efficiency so the scan only happens
// periodically instead of on every orphan added to the pool.
if now := mstime.Now(); now.After(mp.nextExpireScan) {
origNumOrphans := len(mp.orphans)
for _, otx := range mp.orphans {
if now.After(otx.expiration) {
// Remove redeemers too because the missing
// parents are very unlikely to ever materialize
// since the orphan has already been around more
// than long enough for them to be delivered.
mp.removeOrphan(otx.tx, true)
}
}
// Set next expiration scan to occur after the scan interval.
mp.nextExpireScan = now.Add(orphanExpireScanInterval)
numOrphans := len(mp.orphans)
if numExpired := origNumOrphans - numOrphans; numExpired > 0 {
log.Debugf("Expired %d %s (remaining: %d)", numExpired,
logger.PickNoun(uint64(numExpired), "orphan", "orphans"),
numOrphans)
}
}
// Nothing to do if adding another orphan will not cause the pool to
// exceed the limit.
if len(mp.orphans)+1 <= mp.policy.MaxOrphanTxs {
return nil
}
// Remove a random entry from the map. For most compilers, Go's
// range statement iterates starting at a random item although
// that is not 100% guaranteed by the spec. The iteration order
// is not important here because an adversary would have to be
// able to pull off preimage attacks on the hashing function in
// order to target eviction of specific entries anyways.
for _, otx := range mp.orphans {
// Don't remove redeemers in the case of a random eviction since
// it is quite possible it might be needed again shortly.
mp.removeOrphan(otx.tx, false)
break
}
return nil
}
// addOrphan adds an orphan transaction to the orphan pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) addOrphan(tx *consensusexternalapi.DomainTransaction) {
// Nothing to do if no orphans are allowed.
if mp.policy.MaxOrphanTxs <= 0 {
return
}
// Limit the number orphan transactions to prevent memory exhaustion.
// This will periodically remove any expired orphans and evict a random
// orphan if space is still needed.
mp.limitNumOrphans()
txID := consensushashing.TransactionID(tx)
mp.orphans[*txID] = &orphanTx{
tx: tx,
expiration: mstime.Now().Add(orphanTTL),
}
for _, txIn := range tx.Inputs {
if _, exists := mp.orphansByPrev[txIn.PreviousOutpoint]; !exists {
mp.orphansByPrev[txIn.PreviousOutpoint] =
make(map[consensusexternalapi.DomainTransactionID]*consensusexternalapi.DomainTransaction)
}
mp.orphansByPrev[txIn.PreviousOutpoint][*txID] = tx
}
log.Debugf("Stored orphan transaction %s (total: %d)", consensushashing.TransactionID(tx),
len(mp.orphans))
}
// maybeAddOrphan potentially adds an orphan to the orphan pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) maybeAddOrphan(tx *consensusexternalapi.DomainTransaction) error {
// Ignore orphan transactions that are too large. This helps avoid
// a memory exhaustion attack based on sending a lot of really large
// orphans. In the case there is a valid transaction larger than this,
// it will ultimtely be rebroadcast after the parent transactions
// have been mined or otherwise received.
//
// Note that the number of orphan transactions in the orphan pool is
// also limited, so this equates to a maximum memory used of
// mp.policy.MaxOrphanTxSize * mp.policy.MaxOrphanTxs (which is ~5MB
// using the default values at the time this comment was written).
serializedLen := estimatedsize.TransactionEstimatedSerializedSize(tx)
if serializedLen > uint64(mp.policy.MaxOrphanTxSize) {
str := fmt.Sprintf("orphan transaction size of %d bytes is "+
"larger than max allowed size of %d bytes",
serializedLen, mp.policy.MaxOrphanTxSize)
return txRuleError(RejectNonstandard, str)
}
// Add the orphan if the none of the above disqualified it.
mp.addOrphan(tx)
return nil
}
// removeOrphanDoubleSpends removes all orphans which spend outputs spent by the
// passed transaction from the orphan pool. Removing those orphans then leads
// to removing all orphans which rely on them, recursively. This is necessary
// when a transaction is added to the main pool because it may spend outputs
// that orphans also spend.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) removeOrphanDoubleSpends(tx *consensusexternalapi.DomainTransaction) {
for _, txIn := range tx.Inputs {
for _, orphan := range mp.orphansByPrev[txIn.PreviousOutpoint] {
mp.removeOrphan(orphan, true)
}
}
}
// isTransactionInPool returns whether or not the passed transaction already
// exists in the main pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *mempool) isTransactionInPool(txID *consensusexternalapi.DomainTransactionID) bool {
if _, exists := mp.pool[*txID]; exists {
return true
}
return mp.isInDependPool(txID)
}
// isInDependPool returns whether or not the passed transaction already
// exists in the depend pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *mempool) isInDependPool(hash *consensusexternalapi.DomainTransactionID) bool {
if _, exists := mp.chainedTransactions[*hash]; exists {
return true
}
return false
}
// isOrphanInPool returns whether or not the passed transaction already exists
// in the orphan pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *mempool) isOrphanInPool(txID *consensusexternalapi.DomainTransactionID) bool {
if _, exists := mp.orphans[*txID]; exists {
return true
}
return false
}
// haveTransaction returns whether or not the passed transaction already exists
// in the main pool or in the orphan pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *mempool) haveTransaction(txID *consensusexternalapi.DomainTransactionID) bool {
return mp.isTransactionInPool(txID) || mp.isOrphanInPool(txID)
}
// removeBlockTransactionsFromPool removes the transactions that are found in the block
// from the mempool, and move their chained mempool transactions (if any) to the main pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) removeBlockTransactionsFromPool(txs []*consensusexternalapi.DomainTransaction) error {
for _, tx := range txs[transactionhelper.CoinbaseTransactionIndex+1:] {
txID := consensushashing.TransactionID(tx)
if _, exists := mp.fetchTxDesc(txID); !exists {
continue
}
err := mp.cleanTransactionFromSets(tx)
if err != nil {
return err
}
mp.updateBlockTransactionChainedTransactions(tx)
}
return nil
}
// removeTransactionAndItsChainedTransactions removes a transaction and all of its chained transaction from the mempool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) removeTransactionAndItsChainedTransactions(tx *consensusexternalapi.DomainTransaction) error {
txID := consensushashing.TransactionID(tx)
// Remove any transactions which rely on this one.
for i := uint32(0); i < uint32(len(tx.Outputs)); i++ {
prevOut := consensusexternalapi.DomainOutpoint{TransactionID: *txID, Index: i}
if txRedeemer, exists := mp.mempoolUTXOSet.poolTransactionBySpendingOutpoint(prevOut); exists {
err := mp.removeTransactionAndItsChainedTransactions(txRedeemer)
if err != nil {
return err
}
}
}
if _, exists := mp.chainedTransactions[*txID]; exists {
mp.removeChainTransaction(tx)
}
err := mp.cleanTransactionFromSets(tx)
if err != nil {
return err
}
return nil
}
// cleanTransactionFromSets removes the transaction from all mempool related transaction sets.
// It assumes that any chained transaction is already cleaned from the mempool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) cleanTransactionFromSets(tx *consensusexternalapi.DomainTransaction) error {
err := mp.mempoolUTXOSet.removeTx(tx)
if err != nil {
return err
}
txID := consensushashing.TransactionID(tx)
delete(mp.pool, *txID)
delete(mp.chainedTransactions, *txID)
return nil
}
// updateBlockTransactionChainedTransactions processes the dependencies of a
// transaction that was included in a block and was just now removed from the mempool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) updateBlockTransactionChainedTransactions(tx *consensusexternalapi.DomainTransaction) {
prevOut := consensusexternalapi.DomainOutpoint{TransactionID: *consensushashing.TransactionID(tx)}
for txOutIdx := range tx.Outputs {
// Skip to the next available output if there are none.
prevOut.Index = uint32(txOutIdx)
txDesc, exists := mp.chainedTransactionByPreviousOutpoint[prevOut]
if !exists {
continue
}
txDesc.depCount--
// If the transaction is not chained anymore, move it into the main pool
if txDesc.depCount == 0 {
// Transaction may be already removed by recursive calls, if removeRedeemers is true.
// So avoid moving it into main pool
txDescID := consensushashing.TransactionID(txDesc.DomainTransaction)
if _, ok := mp.chainedTransactions[*txDescID]; ok {
delete(mp.chainedTransactions, *txDescID)
mp.pool[*txDescID] = txDesc
}
}
delete(mp.chainedTransactionByPreviousOutpoint, prevOut)
}
}
// removeChainTransaction removes a chain transaction and all of its relation as a result of double spend.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) removeChainTransaction(tx *consensusexternalapi.DomainTransaction) {
delete(mp.chainedTransactions, *consensushashing.TransactionID(tx))
for _, txIn := range tx.Inputs {
delete(mp.chainedTransactionByPreviousOutpoint, txIn.PreviousOutpoint)
}
}
// removeDoubleSpends removes all transactions which spend outputs spent by the
// passed transaction from the memory pool. Removing those transactions then
// leads to removing all transactions which rely on them, recursively. This is
// necessary when a block is connected to the DAG because the block may
// contain transactions which were previously unknown to the memory pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) removeDoubleSpends(tx *consensusexternalapi.DomainTransaction) error {
txID := consensushashing.TransactionID(tx)
for _, txIn := range tx.Inputs {
if txRedeemer, ok := mp.mempoolUTXOSet.poolTransactionBySpendingOutpoint(txIn.PreviousOutpoint); ok {
if !consensushashing.TransactionID(txRedeemer).Equal(txID) {
err := mp.removeTransactionAndItsChainedTransactions(txRedeemer)
if err != nil {
return err
}
}
}
}
return nil
}
// addTransaction adds the passed transaction to the memory pool. It should
// not be called directly as it doesn't perform any validation. This is a
// helper for maybeAcceptTransaction.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) addTransaction(tx *consensusexternalapi.DomainTransaction, mass uint64, fee uint64, parentsInPool []consensusexternalapi.DomainOutpoint) (*txDescriptor, error) {
// Add the transaction to the pool and mark the referenced outpoints
// as spent by the pool.
txDescriptor := &txDescriptor{
DomainTransaction: tx,
depCount: len(parentsInPool),
}
txID := *consensushashing.TransactionID(tx)
if len(parentsInPool) == 0 {
mp.pool[txID] = txDescriptor
} else {
mp.chainedTransactions[txID] = txDescriptor
for _, previousOutpoint := range parentsInPool {
mp.chainedTransactionByPreviousOutpoint[previousOutpoint] = txDescriptor
}
}
err := mp.mempoolUTXOSet.addTx(tx)
if err != nil {
return nil, err
}
return txDescriptor, nil
}
// checkPoolDoubleSpend checks whether or not the passed transaction is
// attempting to spend coins already spent by other transactions in the pool.
// Note it does not check for double spends against transactions already in the
// DAG.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *mempool) checkPoolDoubleSpend(tx *consensusexternalapi.DomainTransaction) error {
for _, txIn := range tx.Inputs {
if txR, exists := mp.mempoolUTXOSet.poolTransactionBySpendingOutpoint(txIn.PreviousOutpoint); exists {
str := fmt.Sprintf("output %s already spent by "+
"transaction %s in the memory pool",
txIn.PreviousOutpoint, consensushashing.TransactionID(txR))
return txRuleError(RejectDuplicate, str)
}
}
return nil
}
// This function MUST be called with the mempool lock held (for reads).
// This only fetches from the main transaction pool and does not include
// orphans.
// returns false in the second return parameter if transaction was not found
func (mp *mempool) fetchTxDesc(txID *consensusexternalapi.DomainTransactionID) (*txDescriptor, bool) {
txDesc, exists := mp.pool[*txID]
if !exists {
txDesc, exists = mp.chainedTransactions[*txID]
}
return txDesc, exists
}
// maybeAcceptTransaction is the main workhorse for handling insertion of new
// free-standing transactions into a memory pool. It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, detecting orphan transactions, and insertion into the memory pool.
//
// If the transaction is an orphan (missing parent transactions), the
// transaction is NOT added to the orphan pool, but each unknown referenced
// parent is returned. Use ProcessTransaction instead if new orphans should
// be added to the orphan pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) maybeAcceptTransaction(tx *consensusexternalapi.DomainTransaction, rejectDupOrphans bool) (
[]*consensusexternalapi.DomainOutpoint, *txDescriptor, error) {
txID := consensushashing.TransactionID(tx)
// Don't accept the transaction if it already exists in the pool. This
// applies to orphan transactions as well when the reject duplicate
// orphans flag is set. This check is intended to be a quick check to
// weed out duplicates.
if mp.isTransactionInPool(txID) || (rejectDupOrphans &&
mp.isOrphanInPool(txID)) {
str := fmt.Sprintf("already have transaction %s", txID)
return nil, nil, txRuleError(RejectDuplicate, str)
}
// Don't allow non-standard transactions if the network parameters
// forbid their acceptance.
if !mp.policy.AcceptNonStd {
err := checkTransactionStandard(tx, &mp.policy)
if err != nil {
// Attempt to extract a reject code from the error so
// it can be retained. When not possible, fall back to
// a non standard error.
rejectCode, found := extractRejectCode(err)
if !found {
rejectCode = RejectNonstandard
}
str := fmt.Sprintf("transaction %s is not standard: %s",
txID, err)
return nil, nil, txRuleError(rejectCode, str)
}
}
// The transaction may not use any of the same outputs as other
// transactions already in the pool as that would ultimately result in a
// double spend. This check is intended to be quick and therefore only
// detects double spends within the transaction pool itself. The
// transaction could still be double spending coins from the DAG
// at this point. There is a more in-depth check that happens later
// after fetching the referenced transaction inputs from the DAG
// which examines the actual spend data and prevents double spends.
err := mp.checkPoolDoubleSpend(tx)
if err != nil {
return nil, nil, err
}
// Don't allow the transaction if it exists in the DAG and is
// not already fully spent.
if mp.mempoolUTXOSet.checkExists(tx) {
return nil, nil, txRuleError(RejectDuplicate, "transaction already exists")
}
// Transaction is an orphan if any of the referenced transaction outputs
// don't exist or are already spent. Adding orphans to the orphan pool
// is not handled by this function, and the caller should use
// maybeAddOrphan if this behavior is desired.
parentsInPool := mp.mempoolUTXOSet.populateUTXOEntries(tx)
// This will populate the missing UTXOEntries.
err = mp.consensus.ValidateTransactionAndPopulateWithConsensusData(tx)
missingOutpoints := ruleerrors.ErrMissingTxOut{}
if err != nil {
if errors.As(err, &missingOutpoints) {
return missingOutpoints.MissingOutpoints, nil, nil
}
if errors.As(err, &ruleerrors.RuleError{}) {
return nil, nil, newRuleError(err)
}
return nil, nil, err
}
// Don't allow transactions with non-standard inputs if the network
// parameters forbid their acceptance.
if !mp.policy.AcceptNonStd {
err := checkInputsStandard(tx)
if err != nil {
// Attempt to extract a reject code from the error so
// it can be retained. When not possible, fall back to
// a non standard error.
rejectCode, found := extractRejectCode(err)
if !found {
rejectCode = RejectNonstandard
}
str := fmt.Sprintf("transaction %s has a non-standard "+
"input: %s", txID, err)
return nil, nil, txRuleError(rejectCode, str)
}
}
// Don't allow transactions with fees too low to get into a mined block
serializedSize := int64(estimatedsize.TransactionEstimatedSerializedSize(tx))
minFee := uint64(calcMinRequiredTxRelayFee(serializedSize,
mp.policy.MinRelayTxFee))
if tx.Fee < minFee {
str := fmt.Sprintf("transaction %s has %d fees which is under "+
"the required amount of %d", txID, tx.Fee,
minFee)
return nil, nil, txRuleError(RejectInsufficientFee, str)
}
// Add to transaction pool.
txDesc, err := mp.addTransaction(tx, tx.Mass, tx.Fee, parentsInPool)
if err != nil {
return nil, nil, err
}
log.Debugf("Accepted transaction %s (pool size: %d)", txID,
len(mp.pool))
return nil, txDesc, nil
}
// processOrphans determines if there are any orphans which depend on the passed
// transaction hash (it is possible that they are no longer orphans) and
// potentially accepts them to the memory pool. It repeats the process for the
// newly accepted transactions (to detect further orphans which may no longer be
// orphans) until there are no more.
//
// It returns a slice of transactions added to the mempool. A nil slice means
// no transactions were moved from the orphan pool to the mempool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *mempool) processOrphans(acceptedTx *consensusexternalapi.DomainTransaction) []*txDescriptor {
var acceptedTxns []*txDescriptor
// Start with processing at least the passed transaction.
processList := list.New()
processList.PushBack(acceptedTx)
for processList.Len() > 0 {
// Pop the transaction to process from the front of the list.
firstElement := processList.Remove(processList.Front())
processItem := firstElement.(*consensusexternalapi.DomainTransaction)
prevOut := consensusexternalapi.DomainOutpoint{TransactionID: *consensushashing.TransactionID(processItem)}
for txOutIdx := range processItem.Outputs {
// Look up all orphans that redeem the output that is
// now available. This will typically only be one, but
// it could be multiple if the orphan pool contains
// double spends. While it may seem odd that the orphan
// pool would allow this since there can only possibly
// ultimately be a single redeemer, it's important to
// track it this way to prevent malicious actors from
// being able to purposely constructing orphans that
// would otherwise make outputs unspendable.
//
// Skip to the next available output if there are none.
prevOut.Index = uint32(txOutIdx)
orphans, exists := mp.orphansByPrev[prevOut]
if !exists {
continue
}
// Potentially accept an orphan into the tx pool.
for _, tx := range orphans {
missing, txD, err := mp.maybeAcceptTransaction(
tx, false)
if err != nil {
// The orphan is now invalid, so there
// is no way any other orphans which
// redeem any of its outputs can be
// accepted. Remove them.
mp.removeOrphan(tx, true)
break
}
// Transaction is still an orphan. Try the next
// orphan which redeems this output.
if len(missing) > 0 {
continue
}
// Transaction was accepted into the main pool.
//
// Add it to the list of accepted transactions
// that are no longer orphans, remove it from
// the orphan pool, and add it to the list of
// transactions to process so any orphans that
// depend on it are handled too.
acceptedTxns = append(acceptedTxns, txD)
mp.removeOrphan(tx, false)
processList.PushBack(tx)
// Only one transaction for this outpoint can be
// accepted, so the rest are now double spends
// and are removed later.
break
}
}
}
// Recursively remove any orphans that also redeem any outputs redeemed
// by the accepted transactions since those are now definitive double
// spends.
mp.removeOrphanDoubleSpends(acceptedTx)
for _, txDescriptor := range acceptedTxns {
mp.removeOrphanDoubleSpends(txDescriptor.DomainTransaction)
}
return acceptedTxns
}
// ProcessTransaction is the main workhorse for handling insertion of new
// free-standing transactions into the memory pool. It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, orphan transaction handling, and insertion into the memory pool.
//
// It returns a slice of transactions added to the mempool. When the
// error is nil, the list will include the passed transaction itself along
// with any additional orphan transaactions that were added as a result of
// the passed one being accepted.
//
// This function is safe for concurrent access.
func (mp *mempool) ValidateAndInsertTransaction(tx *consensusexternalapi.DomainTransaction, allowOrphan bool) error {
log.Tracef("Processing transaction %s", consensushashing.TransactionID(tx))
// Protect concurrent access.
mp.mtx.Lock()
defer mp.mtx.Unlock()
// Potentially accept the transaction to the memory pool.
missingParents, txD, err := mp.maybeAcceptTransaction(tx, true)
if err != nil {
return err
}
if len(missingParents) == 0 {
// Accept any orphan transactions that depend on this
// transaction (they may no longer be orphans if all inputs
// are now available) and repeat for those accepted
// transactions until there are no more.
newTxs := mp.processOrphans(tx)
acceptedTxs := make([]*txDescriptor, len(newTxs)+1)
// Add the parent transaction first so remote nodes
// do not add orphans.
acceptedTxs[0] = txD
copy(acceptedTxs[1:], newTxs)
return nil
}
// The transaction is an orphan (has inputs missing). Reject
// it if the flag to allow orphans is not set.
if !allowOrphan {
// Only use the first missing parent transaction in
// the error message.
//
// NOTE: RejectDuplicate is really not an accurate
// reject code here, but it matches the reference
// implementation and there isn't a better choice due
// to the limited number of reject codes. Missing
// inputs is assumed to mean they are already spent
// which is not really always the case.
str := fmt.Sprintf("orphan transaction %s references "+
"outputs of unknown or fully-spent "+
"transaction %s", consensushashing.TransactionID(tx), missingParents[0])
return txRuleError(RejectDuplicate, str)
}
// Potentially add the orphan transaction to the orphan pool.
return mp.maybeAddOrphan(tx)
}
// Count returns the number of transactions in the main pool. It does not
// include the orphan pool.
//
// This function is safe for concurrent access.
func (mp *mempool) Count() int {
mp.mtx.RLock()
defer mp.mtx.RUnlock()
count := len(mp.pool)
return count
}
// ChainedCount returns the number of chained transactions in the mempool. It does not
// include the orphan pool.
//
// This function is safe for concurrent access.
func (mp *mempool) ChainedCount() int {
mp.mtx.RLock()
defer mp.mtx.RUnlock()
return len(mp.chainedTransactions)
}
// BlockCandidateTransactions returns a slice of all the candidate transactions for the next block
// This is safe for concurrent use
func (mp *mempool) BlockCandidateTransactions() []*consensusexternalapi.DomainTransaction {
mp.mtx.RLock()
defer mp.mtx.RUnlock()
descs := make([]*consensusexternalapi.DomainTransaction, len(mp.pool))
i := 0
for _, desc := range mp.pool {
descs[i] = desc.DomainTransaction
i++
}
return descs
}
// HandleNewBlockTransactions removes all the transactions in the new block
// from the mempool and the orphan pool, and it also removes
// from the mempool transactions that double spend a
// transaction that is already in the DAG
func (mp *mempool) HandleNewBlockTransactions(txs []*consensusexternalapi.DomainTransaction) ([]*consensusexternalapi.DomainTransaction, error) {
// Protect concurrent access.
mp.mtx.Lock()
defer mp.mtx.Unlock()
// Remove all of the transactions (except the coinbase) in the
// connected block from the transaction pool. Secondly, remove any
// transactions which are now double spends as a result of these
// new transactions. Finally, remove any transaction that is
// no longer an orphan. Transactions which depend on a confirmed
// transaction are NOT removed recursively because they are still
// valid.
err := mp.removeBlockTransactionsFromPool(txs)
if err != nil {
return nil, errors.Wrapf(err, "Failed removing txs from pool")
}
acceptedTxs := make([]*consensusexternalapi.DomainTransaction, 0)
for _, tx := range txs[transactionhelper.CoinbaseTransactionIndex+1:] {
err := mp.removeDoubleSpends(tx)
if err != nil {
return nil, errors.Wrapf(err, "Failed removing tx from mempool: %s", consensushashing.TransactionID(tx))
}
mp.removeOrphan(tx, false)
acceptedOrphans := mp.processOrphans(tx)
for _, acceptedOrphan := range acceptedOrphans {
acceptedTxs = append(acceptedTxs, acceptedOrphan.DomainTransaction)
}
}
return acceptedTxs, nil
}
func (mp *mempool) RemoveTransactions(txs []*consensusexternalapi.DomainTransaction) {
// Protect concurrent access.
mp.mtx.Lock()
defer mp.mtx.Unlock()
for _, tx := range txs {
err := mp.removeDoubleSpends(tx)
if err != nil {
log.Infof("Failed removing tx from mempool: %s, '%s'", consensushashing.TransactionID(tx), err)
}
mp.removeOrphan(tx, true)
}
}