kaspad/blockdag/validate.go
Ori Newman 0e278ca22b [NOD-350] Implement testnet faucet (#438)
* [NOD-350] Implement testnet faucet

* [NOD-350] Add JSON annotations to api server response types

* [NOD-350] Fix IP check query, update IP usage with upsert, and make IP a primary key

* [NOD-377] Remove redundant float conversion

* [NOD-377] Change not current database error message

* [NOD-377] change API route from /money_request to /request_money

* [NOD-377] Add a constant for 24 hours

* [NOD-377] Remove redundant call for getWalletUTXOSet()

* [NOD-377] Condition refactoring

* [NOD-377] Fix POST request to API server content type

* [NOD-350] Rename day -> timeBetweenRequests

* [NOD-377] Rename timeBetweenRequests -> minRequestInterval, timeBefore24Hours -> minRequestInterval

* [NOD-350] Rename file responsetypes -> response_types

* [NOD-350] Rename convertTxModelToTxResponse -> convertTxDBModelToTxResponse

* [NOD-350] Explicitly select blue_score in fetchSelectedTipBlueScore

* [NOD-350] Refactor and add comments

* [NOD-350] Make calcFee use MassPerTxByte

* [NOD-350] Convert IP column to varchar(39) to allow ipv6 addresses

* [NOD-350] Add comments to isFundedAndIsChangeOutputRequired

* [NOD-350] Remove approximateConfirmationsForCoinbaseMaturity

* [NOD-350] Fix comments
2019-10-31 11:59:56 +02:00

1015 lines
35 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockdag
import (
"fmt"
"math"
"sort"
"time"
"github.com/daglabs/btcd/dagconfig"
"github.com/daglabs/btcd/txscript"
"github.com/daglabs/btcd/util"
"github.com/daglabs/btcd/util/daghash"
"github.com/daglabs/btcd/util/subnetworkid"
"github.com/daglabs/btcd/wire"
)
const (
// MaxCoinbasePayloadLen is the maximum length a coinbase payload can be.
MaxCoinbasePayloadLen = 150
// baseSubsidy is the starting subsidy amount for mined blocks. This
// value is halved every SubsidyHalvingInterval blocks.
baseSubsidy = 50 * util.SatoshiPerBitcoin
// the following are used when calculating a transaction's mass
// MassPerTxByte is the number of grams that any byte
// adds to a transaction.
MassPerTxByte = 1
// MassPerScriptPubKeyByte is the number of grams that any
// scriptPubKey byte adds to a transaction.
MassPerScriptPubKeyByte = 10
// MassPerSigOp is the number of grams that any
// signature operation adds to a transaction.
MassPerSigOp = 10000
)
// isNullOutpoint determines whether or not a previous transaction outpoint
// is set.
func isNullOutpoint(outpoint *wire.Outpoint) bool {
if outpoint.Index == math.MaxUint32 && outpoint.TxID == daghash.ZeroTxID {
return true
}
return false
}
// SequenceLockActive determines if a transaction's sequence locks have been
// met, meaning that all the inputs of a given transaction have reached a
// blue score or time sufficient for their relative lock-time maturity.
func SequenceLockActive(sequenceLock *SequenceLock, blockBlueScore uint64,
medianTimePast time.Time) bool {
// If either the seconds, or blue score relative-lock time has not yet
// reached, then the transaction is not yet mature according to its
// sequence locks.
if sequenceLock.Seconds >= medianTimePast.Unix() ||
sequenceLock.BlockBlueScore >= int64(blockBlueScore) {
return false
}
return true
}
// IsFinalizedTransaction determines whether or not a transaction is finalized.
func IsFinalizedTransaction(tx *util.Tx, blockBlueScore uint64, blockTime time.Time) bool {
msgTx := tx.MsgTx()
// Lock time of zero means the transaction is finalized.
lockTime := msgTx.LockTime
if lockTime == 0 {
return true
}
// The lock time field of a transaction is either a block blue score at
// which the transaction is finalized or a timestamp depending on if the
// value is before the txscript.LockTimeThreshold. When it is under the
// threshold it is a block blue score.
blockTimeOrBlueScore := int64(0)
if lockTime < txscript.LockTimeThreshold {
blockTimeOrBlueScore = int64(blockBlueScore)
} else {
blockTimeOrBlueScore = blockTime.Unix()
}
if int64(lockTime) < blockTimeOrBlueScore {
return true
}
// At this point, the transaction's lock time hasn't occurred yet, but
// the transaction might still be finalized if the sequence number
// for all transaction inputs is maxed out.
for _, txIn := range msgTx.TxIn {
if txIn.Sequence != math.MaxUint64 {
return false
}
}
return true
}
// CalcBlockSubsidy returns the subsidy amount a block at the provided blue score
// should have. This is mainly used for determining how much the coinbase for
// newly generated blocks awards as well as validating the coinbase for blocks
// has the expected value.
//
// The subsidy is halved every SubsidyReductionInterval blocks. Mathematically
// this is: baseSubsidy / 2^(blueScore/SubsidyReductionInterval)
//
// At the target block generation rate for the main network, this is
// approximately every 4 years.
func CalcBlockSubsidy(blueScore uint64, dagParams *dagconfig.Params) uint64 {
if dagParams.SubsidyReductionInterval == 0 {
return baseSubsidy
}
// Equivalent to: baseSubsidy / 2^(blueScore/subsidyHalvingInterval)
return baseSubsidy >> uint(blueScore/dagParams.SubsidyReductionInterval)
}
// CheckTransactionSanity performs some preliminary checks on a transaction to
// ensure it is sane. These checks are context free.
func CheckTransactionSanity(tx *util.Tx, subnetworkID *subnetworkid.SubnetworkID) error {
isCoinbase := tx.IsCoinBase()
// A transaction must have at least one input.
msgTx := tx.MsgTx()
if !isCoinbase && len(msgTx.TxIn) == 0 {
return ruleError(ErrNoTxInputs, "transaction has no inputs")
}
// A transaction must not exceed the maximum allowed block mass when
// serialized.
serializedTxSize := msgTx.SerializeSize()
if serializedTxSize*MassPerTxByte > wire.MaxMassPerTx {
str := fmt.Sprintf("serialized transaction is too big - got "+
"%d, max %d", serializedTxSize, wire.MaxMassPerBlock)
return ruleError(ErrTxMassTooHigh, str)
}
// Ensure the transaction amounts are in range. Each transaction
// output must not be negative or more than the max allowed per
// transaction. Also, the total of all outputs must abide by the same
// restrictions. All amounts in a transaction are in a unit value known
// as a satoshi. One bitcoin is a quantity of satoshi as defined by the
// SatoshiPerBitcoin constant.
var totalSatoshi uint64
for _, txOut := range msgTx.TxOut {
satoshi := txOut.Value
if satoshi > util.MaxSatoshi {
str := fmt.Sprintf("transaction output value of %d is "+
"higher than max allowed value of %d", satoshi,
util.MaxSatoshi)
return ruleError(ErrBadTxOutValue, str)
}
// Binary arithmetic guarantees that any overflow is detected and reported.
// This is impossible for Bitcoin, but perhaps possible if an alt increases
// the total money supply.
newTotalSatoshi := totalSatoshi + satoshi
if newTotalSatoshi < totalSatoshi {
str := fmt.Sprintf("total value of all transaction "+
"outputs exceeds max allowed value of %d",
util.MaxSatoshi)
return ruleError(ErrBadTxOutValue, str)
}
totalSatoshi = newTotalSatoshi
if totalSatoshi > util.MaxSatoshi {
str := fmt.Sprintf("total value of all transaction "+
"outputs is %d which is higher than max "+
"allowed value of %d", totalSatoshi,
util.MaxSatoshi)
return ruleError(ErrBadTxOutValue, str)
}
}
// Check for duplicate transaction inputs.
existingTxOut := make(map[wire.Outpoint]struct{})
for _, txIn := range msgTx.TxIn {
if _, exists := existingTxOut[txIn.PreviousOutpoint]; exists {
return ruleError(ErrDuplicateTxInputs, "transaction "+
"contains duplicate inputs")
}
existingTxOut[txIn.PreviousOutpoint] = struct{}{}
}
// Coinbase payload length must not exceed the max length.
if isCoinbase {
payloadLen := len(msgTx.Payload)
if payloadLen > MaxCoinbasePayloadLen {
str := fmt.Sprintf("coinbase transaction payload length "+
"of %d is out of range (max: %d)",
payloadLen, MaxCoinbasePayloadLen)
return ruleError(ErrBadCoinbasePayloadLen, str)
}
} else {
// Previous transaction outputs referenced by the inputs to this
// transaction must not be null.
for _, txIn := range msgTx.TxIn {
if isNullOutpoint(&txIn.PreviousOutpoint) {
return ruleError(ErrBadTxInput, "transaction "+
"input refers to previous output that "+
"is null")
}
}
}
// Check payload's hash
if !msgTx.SubnetworkID.IsEqual(subnetworkid.SubnetworkIDNative) {
payloadHash := daghash.DoubleHashH(msgTx.Payload)
if !msgTx.PayloadHash.IsEqual(&payloadHash) {
return ruleError(ErrInvalidPayloadHash, "invalid payload hash")
}
} else if msgTx.PayloadHash != nil {
return ruleError(ErrInvalidPayloadHash, "unexpected non-empty payload hash in native subnetwork")
}
// Transactions in native, registry and coinbase subnetworks must have Gas = 0
if (msgTx.SubnetworkID.IsEqual(subnetworkid.SubnetworkIDNative) ||
msgTx.SubnetworkID.IsBuiltIn()) &&
msgTx.Gas > 0 {
return ruleError(ErrInvalidGas, "transaction in the native or "+
"registry subnetworks has gas > 0 ")
}
if msgTx.SubnetworkID.IsEqual(subnetworkid.SubnetworkIDRegistry) {
err := validateSubnetworkRegistryTransaction(msgTx)
if err != nil {
return err
}
}
if msgTx.SubnetworkID.IsEqual(subnetworkid.SubnetworkIDNative) &&
len(msgTx.Payload) > 0 {
return ruleError(ErrInvalidPayload,
"transaction in the native subnetwork includes a payload")
}
// If we are a partial node, only transactions on built in subnetworks
// or our own subnetwork may have a payload
isLocalNodeFull := subnetworkID == nil
shouldTxBeFull := msgTx.SubnetworkID.IsBuiltIn() ||
msgTx.SubnetworkID.IsEqual(subnetworkID)
if !isLocalNodeFull && !shouldTxBeFull && len(msgTx.Payload) > 0 {
return ruleError(ErrInvalidPayload,
"transaction that was expected to be partial has a payload "+
"with length > 0")
}
return nil
}
// checkProofOfWork ensures the block header bits which indicate the target
// difficulty is in min/max range and that the block hash is less than the
// target difficulty as claimed.
//
// The flags modify the behavior of this function as follows:
// - BFNoPoWCheck: The check to ensure the block hash is less than the target
// difficulty is not performed.
func (dag *BlockDAG) checkProofOfWork(header *wire.BlockHeader, flags BehaviorFlags) error {
// The target difficulty must be larger than zero.
target := util.CompactToBig(header.Bits)
if target.Sign() <= 0 {
str := fmt.Sprintf("block target difficulty of %064x is too low",
target)
return ruleError(ErrUnexpectedDifficulty, str)
}
// The target difficulty must be less than the maximum allowed.
if target.Cmp(dag.dagParams.PowMax) > 0 {
str := fmt.Sprintf("block target difficulty of %064x is "+
"higher than max of %064x", target, dag.dagParams.PowMax)
return ruleError(ErrUnexpectedDifficulty, str)
}
// The block hash must be less than the claimed target unless the flag
// to avoid proof of work checks is set.
if flags&BFNoPoWCheck != BFNoPoWCheck {
// The block hash must be less than the claimed target.
hash := header.BlockHash()
hashNum := daghash.HashToBig(hash)
if hashNum.Cmp(target) > 0 {
str := fmt.Sprintf("block hash of %064x is higher than "+
"expected max of %064x", hashNum, target)
return ruleError(ErrHighHash, str)
}
}
return nil
}
// ValidateTxMass makes sure that the given transaction's mass does not exceed
// the maximum allowed limit. Currently, it is equivalent to the block mass limit.
// See CalcTxMass for further details.
func ValidateTxMass(tx *util.Tx, utxoSet UTXOSet) error {
txMass, err := CalcTxMassFromUTXOSet(tx, utxoSet)
if err != nil {
return err
}
if txMass > wire.MaxMassPerBlock {
str := fmt.Sprintf("tx %s has mass %d, which is above the "+
"allowed limit of %d", tx.ID(), txMass, wire.MaxMassPerBlock)
return ruleError(ErrTxMassTooHigh, str)
}
return nil
}
func validateBlockMass(pastUTXO UTXOSet, transactions []*util.Tx) error {
_, err := CalcBlockMass(pastUTXO, transactions)
return err
}
// CalcBlockMass sums up and returns the "mass" of a block. See CalcTxMass
// for further details.
func CalcBlockMass(pastUTXO UTXOSet, transactions []*util.Tx) (uint64, error) {
totalMass := uint64(0)
for _, tx := range transactions {
txMass, err := CalcTxMassFromUTXOSet(tx, pastUTXO)
if err != nil {
return 0, err
}
totalMass += txMass
// We could potentially overflow the accumulator so check for
// overflow as well.
if totalMass < txMass || totalMass > wire.MaxMassPerBlock {
str := fmt.Sprintf("block has total mass %d, which is "+
"above the allowed limit of %d", totalMass, wire.MaxMassPerBlock)
return 0, ruleError(ErrBlockMassTooHigh, str)
}
}
return totalMass, nil
}
// CalcTxMassFromUTXOSet calculates the transaction mass based on the
// UTXO set in its past.
//
// See CalcTxMass for more details.
func CalcTxMassFromUTXOSet(tx *util.Tx, utxoSet UTXOSet) (uint64, error) {
if tx.IsCoinBase() {
return CalcTxMass(tx, nil), nil
}
previousScriptPubKeys := make([][]byte, len(tx.MsgTx().TxIn))
for txInIndex, txIn := range tx.MsgTx().TxIn {
entry, ok := utxoSet.Get(txIn.PreviousOutpoint)
if !ok {
str := fmt.Sprintf("output %s referenced from "+
"transaction %s input %d either does not exist or "+
"has already been spent", txIn.PreviousOutpoint,
tx.ID(), txInIndex)
return 0, ruleError(ErrMissingTxOut, str)
}
previousScriptPubKeys[txInIndex] = entry.ScriptPubKey()
}
return CalcTxMass(tx, previousScriptPubKeys), nil
}
// CalcTxMass sums up and returns the "mass" of a transaction. This number
// is an approximation of how many resources (CPU, RAM, etc.) it would take
// to process the transaction.
// The following properties are considered in the calculation:
// * The transaction length in bytes
// * The length of all output scripts in bytes
// * The count of all input sigOps
func CalcTxMass(tx *util.Tx, previousScriptPubKeys [][]byte) uint64 {
txSize := tx.MsgTx().SerializeSize()
if tx.IsCoinBase() {
return uint64(txSize * MassPerTxByte)
}
scriptPubKeySize := 0
for _, txOut := range tx.MsgTx().TxOut {
scriptPubKeySize += len(txOut.ScriptPubKey)
}
sigOpsCount := 0
for txInIndex, txIn := range tx.MsgTx().TxIn {
// Count the precise number of signature operations in the
// referenced public key script.
sigScript := txIn.SignatureScript
isP2SH := txscript.IsPayToScriptHash(previousScriptPubKeys[txInIndex])
sigOpsCount += txscript.GetPreciseSigOpCount(sigScript, previousScriptPubKeys[txInIndex], isP2SH)
}
return uint64(txSize*MassPerTxByte +
scriptPubKeySize*MassPerScriptPubKeyByte +
sigOpsCount*MassPerSigOp)
}
// checkBlockHeaderSanity performs some preliminary checks on a block header to
// ensure it is sane before continuing with processing. These checks are
// context free.
//
// The flags do not modify the behavior of this function directly, however they
// are needed to pass along to checkProofOfWork.
func (dag *BlockDAG) checkBlockHeaderSanity(header *wire.BlockHeader, flags BehaviorFlags) (delay time.Duration, err error) {
// Ensure the proof of work bits in the block header is in min/max range
// and the block hash is less than the target value described by the
// bits.
err = dag.checkProofOfWork(header, flags)
if err != nil {
return 0, err
}
if len(header.ParentHashes) == 0 {
if !header.BlockHash().IsEqual(dag.dagParams.GenesisHash) {
return 0, ruleError(ErrNoParents, "block has no parents")
}
} else {
err = checkBlockParentsOrder(header)
if err != nil {
return 0, err
}
}
// A block timestamp must not have a greater precision than one second.
// This check is necessary because Go time.Time values support
// nanosecond precision whereas the consensus rules only apply to
// seconds and it's much nicer to deal with standard Go time values
// instead of converting to seconds everywhere.
if !header.Timestamp.Equal(time.Unix(header.Timestamp.Unix(), 0)) {
str := fmt.Sprintf("block timestamp of %s has a higher "+
"precision than one second", header.Timestamp)
return 0, ruleError(ErrInvalidTime, str)
}
// Ensure the block time is not too far in the future. If it's too far, return
// the duration of time that should be waited before the block becomes valid.
maxTimestamp := dag.timeSource.AdjustedTime().Add(time.Second *
time.Duration(int64(dag.TimestampDeviationTolerance)*dag.targetTimePerBlock))
if header.Timestamp.After(maxTimestamp) {
return header.Timestamp.Sub(maxTimestamp), nil
}
return 0, nil
}
//checkBlockParentsOrder ensures that the block's parents are ordered by hash
func checkBlockParentsOrder(header *wire.BlockHeader) error {
sortedHashes := make([]*daghash.Hash, 0, header.NumParentBlocks())
for _, hash := range header.ParentHashes {
sortedHashes = append(sortedHashes, hash)
}
sort.Slice(sortedHashes, func(i, j int) bool {
return daghash.Less(sortedHashes[i], sortedHashes[j])
})
if !daghash.AreEqual(header.ParentHashes, sortedHashes) {
return ruleError(ErrWrongParentsOrder, "block parents are not ordered by hash")
}
return nil
}
// checkBlockSanity performs some preliminary checks on a block to ensure it is
// sane before continuing with block processing. These checks are context free.
//
// The flags do not modify the behavior of this function directly, however they
// are needed to pass along to checkBlockHeaderSanity.
func (dag *BlockDAG) checkBlockSanity(block *util.Block, flags BehaviorFlags) (time.Duration, error) {
msgBlock := block.MsgBlock()
header := &msgBlock.Header
delay, err := dag.checkBlockHeaderSanity(header, flags)
if err != nil {
return 0, err
}
// A block must have at least one transaction.
numTx := len(msgBlock.Transactions)
if numTx == 0 {
return 0, ruleError(ErrNoTransactions, "block does not contain "+
"any transactions")
}
// A block must not have more transactions than the max block mass or
// else it is certainly over the block mass limit.
if numTx > wire.MaxMassPerBlock {
str := fmt.Sprintf("block contains too many transactions - "+
"got %d, max %d", numTx, wire.MaxMassPerBlock)
return 0, ruleError(ErrBlockMassTooHigh, str)
}
// The first transaction in a block must be a coinbase.
transactions := block.Transactions()
if !transactions[util.CoinbaseTransactionIndex].IsCoinBase() {
return 0, ruleError(ErrFirstTxNotCoinbase, "first transaction in "+
"block is not a coinbase")
}
txOffset := util.CoinbaseTransactionIndex + 1
// A block must not have more than one coinbase. And transactions must be
// ordered by subnetwork
for i, tx := range transactions[txOffset:] {
if tx.IsCoinBase() {
str := fmt.Sprintf("block contains second coinbase at "+
"index %d", i+2)
return 0, ruleError(ErrMultipleCoinbases, str)
}
if i != 0 && subnetworkid.Less(&tx.MsgTx().SubnetworkID, &transactions[i].MsgTx().SubnetworkID) {
return 0, ruleError(ErrTransactionsNotSorted, "transactions must be sorted by subnetwork")
}
}
// Do some preliminary checks on each transaction to ensure they are
// sane before continuing.
for _, tx := range transactions {
err := CheckTransactionSanity(tx, dag.subnetworkID)
if err != nil {
return 0, err
}
}
// Build merkle tree and ensure the calculated merkle root matches the
// entry in the block header. This also has the effect of caching all
// of the transaction hashes in the block to speed up future hash
// checks. Bitcoind builds the tree here and checks the merkle root
// after the following checks, but there is no reason not to check the
// merkle root matches here.
hashMerkleTree := BuildHashMerkleTreeStore(block.Transactions())
calculatedHashMerkleRoot := hashMerkleTree.Root()
if !header.HashMerkleRoot.IsEqual(calculatedHashMerkleRoot) {
str := fmt.Sprintf("block hash merkle root is invalid - block "+
"header indicates %s, but calculated value is %s",
header.HashMerkleRoot, calculatedHashMerkleRoot)
return 0, ruleError(ErrBadMerkleRoot, str)
}
// Check for duplicate transactions. This check will be fairly quick
// since the transaction IDs are already cached due to building the
// merkle tree above.
existingTxIDs := make(map[daghash.TxID]struct{})
for _, tx := range transactions {
id := tx.ID()
if _, exists := existingTxIDs[*id]; exists {
str := fmt.Sprintf("block contains duplicate "+
"transaction %s", id)
return 0, ruleError(ErrDuplicateTx, str)
}
existingTxIDs[*id] = struct{}{}
}
return delay, nil
}
// checkBlockHeaderContext performs several validation checks on the block header
// which depend on its position within the block dag.
//
// The flags modify the behavior of this function as follows:
// - BFFastAdd: All checks except those involving comparing the header against
// the checkpoints are not performed.
//
// This function MUST be called with the dag state lock held (for writes).
func (dag *BlockDAG) checkBlockHeaderContext(header *wire.BlockHeader, bluestParent *blockNode, blockChainHeight uint64, fastAdd bool) error {
if !fastAdd {
if err := dag.validateDifficulty(header, bluestParent); err != nil {
return err
}
if err := validateMedianTime(dag, header, bluestParent); err != nil {
return err
}
}
return dag.validateCheckpoints(header, blockChainHeight)
}
func (dag *BlockDAG) validateCheckpoints(header *wire.BlockHeader, blockChainHeight uint64) error {
// Ensure DAG matches up to predetermined checkpoints.
blockHash := header.BlockHash()
if !dag.verifyCheckpoint(blockChainHeight, blockHash) {
str := fmt.Sprintf("block at chain height %d does not match "+
"checkpoint hash", blockChainHeight)
return ruleError(ErrBadCheckpoint, str)
}
return nil
}
func validateMedianTime(dag *BlockDAG, header *wire.BlockHeader, bluestParent *blockNode) error {
if !header.IsGenesis() {
// Ensure the timestamp for the block header is not before the
// median time of the last several blocks (medianTimeBlocks).
medianTime := bluestParent.PastMedianTime(dag)
if header.Timestamp.Before(medianTime) {
str := fmt.Sprintf("block timestamp of %s is not after expected %s", header.Timestamp, medianTime)
return ruleError(ErrTimeTooOld, str)
}
}
return nil
}
func (dag *BlockDAG) validateDifficulty(header *wire.BlockHeader, bluestParent *blockNode) error {
// Ensure the difficulty specified in the block header matches
// the calculated difficulty based on the previous block and
// difficulty retarget rules.
expectedDifficulty := dag.requiredDifficulty(bluestParent,
header.Timestamp)
blockDifficulty := header.Bits
if blockDifficulty != expectedDifficulty {
str := fmt.Sprintf("block difficulty of %d is not the expected value of %d", blockDifficulty, expectedDifficulty)
return ruleError(ErrUnexpectedDifficulty, str)
}
return nil
}
// validateParents validates that no parent is an ancestor of another parent, and no parent is finalized
func validateParents(blockHeader *wire.BlockHeader, parents blockSet) error {
minHeight := uint64(math.MaxUint64)
queue := newDownHeap()
visited := newSet()
for _, parent := range parents {
// isFinalized might be false-negative because node finality status is
// updated in a separate goroutine. This is why later the block is
// checked more thoroughly on the finality rules in dag.checkFinalityRules.
if parent.isFinalized {
return ruleError(ErrFinality, fmt.Sprintf("block %s is a finalized parent of block %s", parent.hash, blockHeader.BlockHash()))
}
if parent.height < minHeight {
minHeight = parent.height
}
for _, grandParent := range parent.parents {
if !visited.contains(grandParent) {
queue.Push(grandParent)
visited.add(grandParent)
}
}
}
for queue.Len() > 0 {
current := queue.pop()
if parents.contains(current) {
return ruleError(ErrInvalidParentsRelation, fmt.Sprintf("block %s is both a parent of %s and an"+
" ancestor of another parent",
current.hash,
blockHeader.BlockHash()))
}
if current.height > minHeight {
for _, parent := range current.parents {
if !visited.contains(parent) {
queue.Push(parent)
visited.add(parent)
}
}
}
}
return nil
}
// checkBlockContext peforms several validation checks on the block which depend
// on its position within the block DAG.
//
// The flags modify the behavior of this function as follows:
// - BFFastAdd: The transaction are not checked to see if they are finalized
// and the somewhat expensive BIP0034 validation is not performed.
//
// The flags are also passed to checkBlockHeaderContext. See its documentation
// for how the flags modify its behavior.
//
// This function MUST be called with the dag state lock held (for writes).
func (dag *BlockDAG) checkBlockContext(block *util.Block, parents blockSet, flags BehaviorFlags) error {
bluestParent := parents.bluest()
fastAdd := flags&BFFastAdd == BFFastAdd
err := validateParents(&block.MsgBlock().Header, parents)
if err != nil {
return err
}
// Perform all block header related validation checks.
header := &block.MsgBlock().Header
if err = dag.checkBlockHeaderContext(header, bluestParent, block.ChainHeight(), fastAdd); err != nil {
return err
}
return nil
}
func (dag *BlockDAG) validateAllTxsFinalized(block *util.Block, node *blockNode, bluestParent *blockNode) error {
blockTime := block.MsgBlock().Header.Timestamp
if !block.IsGenesis() {
blockTime = bluestParent.PastMedianTime(dag)
}
// Ensure all transactions in the block are finalized.
for _, tx := range block.Transactions() {
if !IsFinalizedTransaction(tx, node.blueScore, blockTime) {
str := fmt.Sprintf("block contains unfinalized "+
"transaction %s", tx.ID())
return ruleError(ErrUnfinalizedTx, str)
}
}
return nil
}
// ensureNoDuplicateTx ensures blocks do not contain duplicate transactions which
// 'overwrite' older transactions that are not fully spent. This prevents an
// attack where a coinbase and all of its dependent transactions could be
// duplicated to effectively revert the overwritten transactions to a single
// confirmation thereby making them vulnerable to a double spend.
//
// For more details, see
// https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki and
// http://r6.ca/blog/20120206T005236Z.html.
//
// This function MUST be called with the dag state lock held (for reads).
func ensureNoDuplicateTx(utxoSet UTXOSet, transactions []*util.Tx) error {
// Fetch utxos for all of the transaction ouputs in this block.
// Typically, there will not be any utxos for any of the outputs.
fetchSet := make(map[wire.Outpoint]struct{})
for _, tx := range transactions {
prevOut := wire.Outpoint{TxID: *tx.ID()}
for txOutIdx := range tx.MsgTx().TxOut {
prevOut.Index = uint32(txOutIdx)
fetchSet[prevOut] = struct{}{}
}
}
// Duplicate transactions are only allowed if the previous transaction
// is fully spent.
for outpoint := range fetchSet {
if _, ok := utxoSet.Get(outpoint); ok {
str := fmt.Sprintf("tried to overwrite transaction %s "+
"that is not fully spent", outpoint.TxID)
return ruleError(ErrOverwriteTx, str)
}
}
return nil
}
// CheckTransactionInputsAndCalulateFee performs a series of checks on the inputs to a
// transaction to ensure they are valid. An example of some of the checks
// include verifying all inputs exist, ensuring the block reward seasoning
// requirements are met, detecting double spends, validating all values and fees
// are in the legal range and the total output amount doesn't exceed the input
// amount. As it checks the inputs, it also calculates the total fees for the
// transaction and returns that value.
//
// NOTE: The transaction MUST have already been sanity checked with the
// CheckTransactionSanity function prior to calling this function.
func CheckTransactionInputsAndCalulateFee(tx *util.Tx, txBlueScore uint64, utxoSet UTXOSet, dagParams *dagconfig.Params, fastAdd bool) (
txFeeInSatoshi uint64, err error) {
// Coinbase transactions have no standard inputs to validate.
if tx.IsCoinBase() {
return 0, nil
}
txID := tx.ID()
var totalSatoshiIn uint64
for txInIndex, txIn := range tx.MsgTx().TxIn {
// Ensure the referenced input transaction is available.
entry, ok := utxoSet.Get(txIn.PreviousOutpoint)
if !ok {
str := fmt.Sprintf("output %s referenced from "+
"transaction %s input %d either does not exist or "+
"has already been spent", txIn.PreviousOutpoint,
tx.ID(), txInIndex)
return 0, ruleError(ErrMissingTxOut, str)
}
if !fastAdd {
if err = validateCoinbaseMaturity(dagParams, entry, txBlueScore, txIn); err != nil {
return 0, err
}
}
// Ensure the transaction amounts are in range. Each of the
// output values of the input transactions must not be negative
// or more than the max allowed per transaction. All amounts in
// a transaction are in a unit value known as a satoshi. One
// bitcoin is a quantity of satoshi as defined by the
// SatoshiPerBitcoin constant.
originTxSatoshi := entry.Amount()
if originTxSatoshi > util.MaxSatoshi {
str := fmt.Sprintf("transaction output value of %s is "+
"higher than max allowed value of %d",
util.Amount(originTxSatoshi),
util.MaxSatoshi)
return 0, ruleError(ErrBadTxOutValue, str)
}
// The total of all outputs must not be more than the max
// allowed per transaction. Also, we could potentially overflow
// the accumulator so check for overflow.
lastSatoshiIn := totalSatoshiIn
totalSatoshiIn += originTxSatoshi
if totalSatoshiIn < lastSatoshiIn ||
totalSatoshiIn > util.MaxSatoshi {
str := fmt.Sprintf("total value of all transaction "+
"inputs is %d which is higher than max "+
"allowed value of %d", totalSatoshiIn,
util.MaxSatoshi)
return 0, ruleError(ErrBadTxOutValue, str)
}
}
// Calculate the total output amount for this transaction. It is safe
// to ignore overflow and out of range errors here because those error
// conditions would have already been caught by checkTransactionSanity.
var totalSatoshiOut uint64
for _, txOut := range tx.MsgTx().TxOut {
totalSatoshiOut += txOut.Value
}
// Ensure the transaction does not spend more than its inputs.
if totalSatoshiIn < totalSatoshiOut {
str := fmt.Sprintf("total value of all transaction inputs for "+
"transaction %s is %d which is less than the amount "+
"spent of %d", txID, totalSatoshiIn, totalSatoshiOut)
return 0, ruleError(ErrSpendTooHigh, str)
}
// NOTE: bitcoind checks if the transaction fees are < 0 here, but that
// is an impossible condition because of the check above that ensures
// the inputs are >= the outputs.
txFeeInSatoshi = totalSatoshiIn - totalSatoshiOut
return txFeeInSatoshi, nil
}
func validateCoinbaseMaturity(dagParams *dagconfig.Params, entry *UTXOEntry, txBlueScore uint64, txIn *wire.TxIn) error {
// Ensure the transaction is not spending coins which have not
// yet reached the required coinbase maturity.
if entry.IsCoinbase() {
originBlueScore := entry.BlockBlueScore()
blueScoreSincePrev := txBlueScore - originBlueScore
if blueScoreSincePrev < dagParams.BlockCoinbaseMaturity {
str := fmt.Sprintf("tried to spend coinbase "+
"transaction output %s from blue score %d "+
"to blue score %d before required maturity "+
"of %d", txIn.PreviousOutpoint,
originBlueScore, txBlueScore,
dagParams.BlockCoinbaseMaturity)
return ruleError(ErrImmatureSpend, str)
}
}
return nil
}
// checkConnectToPastUTXO performs several checks to confirm connecting the passed
// block to the DAG represented by the passed view does not violate any rules.
//
// An example of some of the checks performed are ensuring connecting the block
// would not cause any duplicate transaction hashes for old transactions that
// aren't already fully spent, double spends, exceeding the maximum allowed
// signature operations per block, invalid values in relation to the expected
// block subsidy, or fail transaction script validation.
//
// It also returns the feeAccumulator for this block.
//
// This function MUST be called with the dag state lock held (for writes).
func (dag *BlockDAG) checkConnectToPastUTXO(block *blockNode, pastUTXO UTXOSet,
transactions []*util.Tx, fastAdd bool) (compactFeeData, error) {
if !fastAdd {
err := ensureNoDuplicateTx(pastUTXO, transactions)
if err != nil {
return nil, err
}
if err := validateBlockMass(pastUTXO, transactions); err != nil {
return nil, err
}
}
// Perform several checks on the inputs for each transaction. Also
// accumulate the total fees. This could technically be combined with
// the loop above instead of running another loop over the transactions,
// but by separating it we can avoid running the more expensive (though
// still relatively cheap as compared to running the scripts) checks
// against all the inputs when the signature operations are out of
// bounds.
// In addition - add all fees into a fee accumulator, to be stored and checked
// when validating descendants' coinbase transactions.
var totalFees uint64
compactFeeFactory := newCompactFeeFactory()
for _, tx := range transactions {
txFee, err := CheckTransactionInputsAndCalulateFee(tx, block.blueScore, pastUTXO,
dag.dagParams, fastAdd)
if err != nil {
return nil, err
}
// Sum the total fees and ensure we don't overflow the
// accumulator.
lastTotalFees := totalFees
totalFees += txFee
if totalFees < lastTotalFees {
return nil, ruleError(ErrBadFees, "total fees for block "+
"overflows accumulator")
}
err = compactFeeFactory.add(txFee)
if err != nil {
return nil, fmt.Errorf("error adding tx %s fee to compactFeeFactory: %s", tx.ID(), err)
}
}
feeData, err := compactFeeFactory.data()
if err != nil {
return nil, fmt.Errorf("error getting bytes of fee data: %s", err)
}
if !fastAdd {
// Don't run scripts if this node is before the latest known good
// checkpoint since the validity is verified via the checkpoints (all
// transactions are included in the merkle root hash and any changes
// will therefore be detected by the next checkpoint). This is a huge
// optimization because running the scripts is the most time consuming
// portion of block handling.
checkpoint := dag.LatestCheckpoint()
runScripts := true
if checkpoint != nil && block.chainHeight <= checkpoint.ChainHeight {
runScripts = false
}
scriptFlags := txscript.ScriptNoFlags
// We obtain the MTP of the *previous* block (unless it's genesis block)
// in order to determine if transactions in the current block are final.
medianTime := block.Header().Timestamp
if !block.isGenesis() {
medianTime = block.selectedParent.PastMedianTime(dag)
}
// We also enforce the relative sequence number based
// lock-times within the inputs of all transactions in this
// candidate block.
for _, tx := range transactions {
// A transaction can only be included within a block
// once the sequence locks of *all* its inputs are
// active.
sequenceLock, err := dag.calcSequenceLock(block, pastUTXO, tx, false)
if err != nil {
return nil, err
}
if !SequenceLockActive(sequenceLock, block.blueScore,
medianTime) {
str := fmt.Sprintf("block contains " +
"transaction whose input sequence " +
"locks are not met")
return nil, ruleError(ErrUnfinalizedTx, str)
}
}
// Now that the inexpensive checks are done and have passed, verify the
// transactions are actually allowed to spend the coins by running the
// expensive ECDSA signature check scripts. Doing this last helps
// prevent CPU exhaustion attacks.
if runScripts {
err := checkBlockScripts(block, pastUTXO, transactions, scriptFlags, dag.sigCache)
if err != nil {
return nil, err
}
}
}
return feeData, nil
}
// CheckConnectBlockTemplate fully validates that connecting the passed block to
// the DAG does not violate any consensus rules, aside from the proof of
// work requirement.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) CheckConnectBlockTemplate(block *util.Block) error {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.CheckConnectBlockTemplateNoLock(block)
}
// CheckConnectBlockTemplateNoLock fully validates that connecting the passed block to
// the DAG does not violate any consensus rules, aside from the proof of
// work requirement. The block must connect to the current tip of the main dag.
func (dag *BlockDAG) CheckConnectBlockTemplateNoLock(block *util.Block) error {
// Skip the proof of work check as this is just a block template.
flags := BFNoPoWCheck
header := block.MsgBlock().Header
delay, err := dag.checkBlockSanity(block, flags)
if err != nil {
return err
}
if delay != 0 {
return fmt.Errorf("Block timestamp is too far in the future")
}
parents, err := lookupParentNodes(block, dag)
if err != nil {
return err
}
err = dag.checkBlockContext(block, parents, flags)
if err != nil {
return err
}
templateNode := newBlockNode(&header, dag.virtual.tips(), dag.dagParams.K)
_, err = dag.checkConnectToPastUTXO(templateNode,
dag.UTXOSet(), block.Transactions(), false)
return err
}