kaspad/blockdag/dag.go
stasatdaglabs 03b7af9a13 [NOD-532] Replace "chain" with "DAG" where appropriate (#537)
* [NOD-532] Change chain to DAG in the root package.

* [NOD-532] Change chain to DAG in checkpoints.go.

* [NOD-532] Change chain to DAG in blockdag.

* [NOD-532] Change chain to DAG in cmd.

* [NOD-532] Change chain to DAG in dagconfig.

* [NOD-532] Change chain to DAG in database.

* [NOD-532] Change chain to DAG in mempool.

* [NOD-532] Change chain to DAG in mempool.

* [NOD-532] Change chain to DAG in netsync.

* [NOD-532] Change chain to DAG in rpcclient.

* [NOD-532] Change chain to DAG in server.

* [NOD-532] Change chain to DAG in txscript.

* [NOD-532] Change chain to DAG in util.

* [NOD-532] Change chain to DAG in wire.

* [NOD-532] Remove block heights in dagio.go examples.

* [NOD-532] Rename fakeChain to fakeDAG.

* [NOD-532] Fix comments, remove unused EnableBCInfoHacks flag.

* [NOD-532] Fix comments and variable names.

* [NOD-532] Fix comments.

* [NOD-532] Fix merge errors.

* [NOD-532] Formatted project.
2019-12-17 13:40:03 +02:00

1968 lines
66 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockdag
import (
"fmt"
"github.com/pkg/errors"
"math"
"sort"
"sync"
"time"
"github.com/kaspanet/kaspad/util/subnetworkid"
"github.com/kaspanet/kaspad/dagconfig"
"github.com/kaspanet/kaspad/database"
"github.com/kaspanet/kaspad/txscript"
"github.com/kaspanet/kaspad/util"
"github.com/kaspanet/kaspad/util/daghash"
"github.com/kaspanet/kaspad/wire"
)
const (
// maxOrphanBlocks is the maximum number of orphan blocks that can be
// queued.
maxOrphanBlocks = 100
)
// orphanBlock represents a block that we don't yet have the parent for. It
// is a normal block plus an expiration time to prevent caching the orphan
// forever.
type orphanBlock struct {
block *util.Block
expiration time.Time
}
// chainUpdates represents the updates made to the selected parent chain after
// a block had been added to the DAG.
type chainUpdates struct {
removedChainBlockHashes []*daghash.Hash
addedChainBlockHashes []*daghash.Hash
}
// BlockDAG provides functions for working with the kaspa block DAG.
// It includes functionality such as rejecting duplicate blocks, ensuring blocks
// follow all rules, and orphan handling.
type BlockDAG struct {
// The following fields are set when the instance is created and can't
// be changed afterwards, so there is no need to protect them with a
// separate mutex.
db database.DB
dagParams *dagconfig.Params
timeSource MedianTimeSource
sigCache *txscript.SigCache
indexManager IndexManager
genesis *blockNode
// The following fields are calculated based upon the provided DAG
// parameters. They are also set when the instance is created and
// can't be changed afterwards, so there is no need to protect them with
// a separate mutex.
targetTimePerBlock int64 // The target delay between blocks (in seconds)
difficultyAdjustmentWindowSize uint64
TimestampDeviationTolerance uint64
// powMaxBits defines the highest allowed proof of work value for a
// block in compact form.
powMaxBits uint32
// dagLock protects concurrent access to the vast majority of the
// fields in this struct below this point.
dagLock sync.RWMutex
utxoLock sync.RWMutex
// index and virtual are related to the memory block index. They both
// have their own locks, however they are often also protected by the
// DAG lock to help prevent logic races when blocks are being processed.
// index houses the entire block index in memory. The block index is
// a tree-shaped structure.
index *blockIndex
// blockCount holds the number of blocks in the DAG
blockCount uint64
// virtual tracks the current tips.
virtual *virtualBlock
// subnetworkID holds the subnetwork ID of the DAG
subnetworkID *subnetworkid.SubnetworkID
// These fields are related to handling of orphan blocks. They are
// protected by a combination of the DAG lock and the orphan lock.
orphanLock sync.RWMutex
orphans map[daghash.Hash]*orphanBlock
prevOrphans map[daghash.Hash][]*orphanBlock
newestOrphan *orphanBlock
// The following caches are used to efficiently keep track of the
// current deployment threshold state of each rule change deployment.
//
// This information is stored in the database so it can be quickly
// reconstructed on load.
//
// warningCaches caches the current deployment threshold state for blocks
// in each of the **possible** deployments. This is used in order to
// detect when new unrecognized rule changes are being voted on and/or
// have been activated such as will be the case when older versions of
// the software are being used
//
// deploymentCaches caches the current deployment threshold state for
// blocks in each of the actively defined deployments.
warningCaches []thresholdStateCache
deploymentCaches []thresholdStateCache
// The following fields are used to determine if certain warnings have
// already been shown.
//
// unknownRulesWarned refers to warnings due to unknown rules being
// activated.
//
// unknownVersionsWarned refers to warnings due to unknown versions
// being mined.
unknownRulesWarned bool
unknownVersionsWarned bool
// The notifications field stores a slice of callbacks to be executed on
// certain blockDAG events.
notificationsLock sync.RWMutex
notifications []NotificationCallback
lastFinalityPoint *blockNode
SubnetworkStore *SubnetworkStore
utxoDiffStore *utxoDiffStore
}
// HaveBlock returns whether or not the DAG instance has the block represented
// by the passed hash. This includes checking the various places a block can
// be in, like part of the DAG or the orphan pool.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) HaveBlock(hash *daghash.Hash) bool {
exists := dag.BlockExists(hash)
return exists || dag.IsKnownOrphan(hash)
}
// HaveBlocks returns whether or not the DAG instances has all blocks represented
// by the passed hashes. This includes checking the various places a block can
// be in, like part of the DAG or the orphan pool.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) HaveBlocks(hashes []*daghash.Hash) bool {
for _, hash := range hashes {
haveBlock := dag.HaveBlock(hash)
if !haveBlock {
return false
}
}
return true
}
// IsKnownOrphan returns whether the passed hash is currently a known orphan.
// Keep in mind that only a limited number of orphans are held onto for a
// limited amount of time, so this function must not be used as an absolute
// way to test if a block is an orphan block. A full block (as opposed to just
// its hash) must be passed to ProcessBlock for that purpose. However, calling
// ProcessBlock with an orphan that already exists results in an error, so this
// function provides a mechanism for a caller to intelligently detect *recent*
// duplicate orphans and react accordingly.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsKnownOrphan(hash *daghash.Hash) bool {
// Protect concurrent access. Using a read lock only so multiple
// readers can query without blocking each other.
dag.orphanLock.RLock()
_, exists := dag.orphans[*hash]
dag.orphanLock.RUnlock()
return exists
}
// IsKnownInvalid returns whether the passed hash is known to be an invalid block.
// Note that if the block is not found this method will return false.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsKnownInvalid(hash *daghash.Hash) bool {
node := dag.index.LookupNode(hash)
if node == nil {
return false
}
return dag.index.NodeStatus(node).KnownInvalid()
}
// GetOrphanMissingAncestorHashes returns all of the missing parents in the orphan's sub-DAG
//
// This function is safe for concurrent access.
func (dag *BlockDAG) GetOrphanMissingAncestorHashes(orphanHash *daghash.Hash) ([]*daghash.Hash, error) {
// Protect concurrent access. Using a read lock only so multiple
// readers can query without blocking each other.
dag.orphanLock.RLock()
defer dag.orphanLock.RUnlock()
missingAncestorsHashes := make([]*daghash.Hash, 0)
visited := make(map[daghash.Hash]bool)
queue := []*daghash.Hash{orphanHash}
for len(queue) > 0 {
var current *daghash.Hash
current, queue = queue[0], queue[1:]
if !visited[*current] {
visited[*current] = true
orphan, orphanExists := dag.orphans[*current]
if orphanExists {
for _, parentHash := range orphan.block.MsgBlock().Header.ParentHashes {
queue = append(queue, parentHash)
}
} else {
if !dag.BlockExists(current) && current != orphanHash {
missingAncestorsHashes = append(missingAncestorsHashes, current)
}
}
}
}
return missingAncestorsHashes, nil
}
// removeOrphanBlock removes the passed orphan block from the orphan pool and
// previous orphan index.
func (dag *BlockDAG) removeOrphanBlock(orphan *orphanBlock) {
// Protect concurrent access.
dag.orphanLock.Lock()
defer dag.orphanLock.Unlock()
// Remove the orphan block from the orphan pool.
orphanHash := orphan.block.Hash()
delete(dag.orphans, *orphanHash)
// Remove the reference from the previous orphan index too.
for _, parentHash := range orphan.block.MsgBlock().Header.ParentHashes {
// An indexing for loop is intentionally used over a range here as range
// does not reevaluate the slice on each iteration nor does it adjust the
// index for the modified slice.
orphans := dag.prevOrphans[*parentHash]
for i := 0; i < len(orphans); i++ {
hash := orphans[i].block.Hash()
if hash.IsEqual(orphanHash) {
orphans = append(orphans[:i], orphans[i+1:]...)
i--
}
}
// Remove the map entry altogether if there are no longer any orphans
// which depend on the parent hash.
if len(orphans) == 0 {
delete(dag.prevOrphans, *parentHash)
continue
}
dag.prevOrphans[*parentHash] = orphans
}
}
// addOrphanBlock adds the passed block (which is already determined to be
// an orphan prior calling this function) to the orphan pool. It lazily cleans
// up any expired blocks so a separate cleanup poller doesn't need to be run.
// It also imposes a maximum limit on the number of outstanding orphan
// blocks and will remove the oldest received orphan block if the limit is
// exceeded.
func (dag *BlockDAG) addOrphanBlock(block *util.Block) {
// Remove expired orphan blocks.
for _, oBlock := range dag.orphans {
if time.Now().After(oBlock.expiration) {
dag.removeOrphanBlock(oBlock)
continue
}
// Update the newest orphan block pointer so it can be discarded
// in case the orphan pool fills up.
if dag.newestOrphan == nil || oBlock.block.Timestamp().After(dag.newestOrphan.block.Timestamp()) {
dag.newestOrphan = oBlock
}
}
// Limit orphan blocks to prevent memory exhaustion.
if len(dag.orphans)+1 > maxOrphanBlocks {
// If the new orphan is newer than the newest orphan on the orphan
// pool, don't add it.
if block.Timestamp().After(dag.newestOrphan.block.Timestamp()) {
return
}
// Remove the newest orphan to make room for the added one.
dag.removeOrphanBlock(dag.newestOrphan)
dag.newestOrphan = nil
}
// Protect concurrent access. This is intentionally done here instead
// of near the top since removeOrphanBlock does its own locking and
// the range iterator is not invalidated by removing map entries.
dag.orphanLock.Lock()
defer dag.orphanLock.Unlock()
// Insert the block into the orphan map with an expiration time
// 1 hour from now.
expiration := time.Now().Add(time.Hour)
oBlock := &orphanBlock{
block: block,
expiration: expiration,
}
dag.orphans[*block.Hash()] = oBlock
// Add to parent hash lookup index for faster dependency lookups.
for _, parentHash := range block.MsgBlock().Header.ParentHashes {
dag.prevOrphans[*parentHash] = append(dag.prevOrphans[*parentHash], oBlock)
}
}
// SequenceLock represents the converted relative lock-time in seconds, and
// absolute block-blue-score for a transaction input's relative lock-times.
// According to SequenceLock, after the referenced input has been confirmed
// within a block, a transaction spending that input can be included into a
// block either after 'seconds' (according to past median time), or once the
// 'BlockBlueScore' has been reached.
type SequenceLock struct {
Seconds int64
BlockBlueScore int64
}
// CalcSequenceLock computes a relative lock-time SequenceLock for the passed
// transaction using the passed UTXOSet to obtain the past median time
// for blocks in which the referenced inputs of the transactions were included
// within. The generated SequenceLock lock can be used in conjunction with a
// block height, and adjusted median block time to determine if all the inputs
// referenced within a transaction have reached sufficient maturity allowing
// the candidate transaction to be included in a block.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) CalcSequenceLock(tx *util.Tx, utxoSet UTXOSet, mempool bool) (*SequenceLock, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.calcSequenceLock(dag.selectedTip(), utxoSet, tx, mempool)
}
// CalcSequenceLockNoLock is lock free version of CalcSequenceLockWithLock
// This function is unsafe for concurrent access.
func (dag *BlockDAG) CalcSequenceLockNoLock(tx *util.Tx, utxoSet UTXOSet, mempool bool) (*SequenceLock, error) {
return dag.calcSequenceLock(dag.selectedTip(), utxoSet, tx, mempool)
}
// calcSequenceLock computes the relative lock-times for the passed
// transaction. See the exported version, CalcSequenceLock for further details.
//
// This function MUST be called with the DAG state lock held (for writes).
func (dag *BlockDAG) calcSequenceLock(node *blockNode, utxoSet UTXOSet, tx *util.Tx, mempool bool) (*SequenceLock, error) {
// A value of -1 for each relative lock type represents a relative time
// lock value that will allow a transaction to be included in a block
// at any given height or time.
sequenceLock := &SequenceLock{Seconds: -1, BlockBlueScore: -1}
// Sequence locks don't apply to coinbase transactions Therefore, we
// return sequence lock values of -1 indicating that this transaction
// can be included within a block at any given height or time.
if tx.IsCoinBase() {
return sequenceLock, nil
}
mTx := tx.MsgTx()
for txInIndex, txIn := range mTx.TxIn {
entry, ok := utxoSet.Get(txIn.PreviousOutpoint)
if !ok {
str := fmt.Sprintf("output %s referenced from "+
"transaction %s input %d either does not exist or "+
"has already been spent", txIn.PreviousOutpoint,
tx.ID(), txInIndex)
return sequenceLock, ruleError(ErrMissingTxOut, str)
}
// If the input blue score is set to the mempool blue score, then we
// assume the transaction makes it into the next block when
// evaluating its sequence blocks.
inputBlueScore := entry.BlockBlueScore()
if entry.IsUnaccepted() {
inputBlueScore = dag.virtual.blueScore
}
// Given a sequence number, we apply the relative time lock
// mask in order to obtain the time lock delta required before
// this input can be spent.
sequenceNum := txIn.Sequence
relativeLock := int64(sequenceNum & wire.SequenceLockTimeMask)
switch {
// Relative time locks are disabled for this input, so we can
// skip any further calculation.
case sequenceNum&wire.SequenceLockTimeDisabled == wire.SequenceLockTimeDisabled:
continue
case sequenceNum&wire.SequenceLockTimeIsSeconds == wire.SequenceLockTimeIsSeconds:
// This input requires a relative time lock expressed
// in seconds before it can be spent. Therefore, we
// need to query for the block prior to the one in
// which this input was accepted within so we can
// compute the past median time for the block prior to
// the one which accepted this referenced output.
blockNode := node
for blockNode.selectedParent.blueScore > inputBlueScore {
blockNode = blockNode.selectedParent
}
medianTime := blockNode.PastMedianTime(dag)
// Time based relative time-locks as defined by BIP 68
// have a time granularity of RelativeLockSeconds, so
// we shift left by this amount to convert to the
// proper relative time-lock. We also subtract one from
// the relative lock to maintain the original lockTime
// semantics.
timeLockSeconds := (relativeLock << wire.SequenceLockTimeGranularity) - 1
timeLock := medianTime.Unix() + timeLockSeconds
if timeLock > sequenceLock.Seconds {
sequenceLock.Seconds = timeLock
}
default:
// The relative lock-time for this input is expressed
// in blocks so we calculate the relative offset from
// the input's blue score as its converted absolute
// lock-time. We subtract one from the relative lock in
// order to maintain the original lockTime semantics.
blockBlueScore := int64(inputBlueScore) + relativeLock - 1
if blockBlueScore > sequenceLock.BlockBlueScore {
sequenceLock.BlockBlueScore = blockBlueScore
}
}
}
return sequenceLock, nil
}
// LockTimeToSequence converts the passed relative locktime to a sequence
// number in accordance to BIP-68.
func LockTimeToSequence(isSeconds bool, locktime uint64) uint64 {
// If we're expressing the relative lock time in blocks, then the
// corresponding sequence number is simply the desired input age.
if !isSeconds {
return locktime
}
// Set the 22nd bit which indicates the lock time is in seconds, then
// shift the locktime over by 9 since the time granularity is in
// 512-second intervals (2^9). This results in a max lock-time of
// 33,553,920 seconds, or 1.1 years.
return wire.SequenceLockTimeIsSeconds |
locktime>>wire.SequenceLockTimeGranularity
}
// addBlock handles adding the passed block to the DAG.
//
// The flags modify the behavior of this function as follows:
// - BFFastAdd: Avoids several expensive transaction validation operations.
//
// This function MUST be called with the DAG state lock held (for writes).
func (dag *BlockDAG) addBlock(node *blockNode, parentNodes blockSet,
block *util.Block, flags BehaviorFlags) (*chainUpdates, error) {
// Skip checks if node has already been fully validated.
fastAdd := flags&BFFastAdd == BFFastAdd || dag.index.NodeStatus(node).KnownValid()
// Connect the block to the DAG.
chainUpdates, err := dag.connectBlock(node, block, fastAdd)
if err != nil {
if _, ok := err.(RuleError); ok {
dag.index.SetStatusFlags(node, statusValidateFailed)
} else {
return nil, err
}
} else {
dag.blockCount++
}
// Intentionally ignore errors writing updated node status to DB. If
// it fails to write, it's not the end of the world. If the block is
// invalid, the worst that can happen is we revalidate the block
// after a restart.
if writeErr := dag.index.flushToDB(); writeErr != nil {
log.Warnf("Error flushing block index changes to disk: %s",
writeErr)
}
// If dag.connectBlock returned a rule error, return it here after updating DB
if err != nil {
return nil, err
}
return chainUpdates, nil
}
func calculateAcceptedIDMerkleRoot(multiBlockTxsAcceptanceData MultiBlockTxsAcceptanceData) *daghash.Hash {
var acceptedTxs []*util.Tx
for _, blockTxsAcceptanceData := range multiBlockTxsAcceptanceData {
for _, txAcceptance := range blockTxsAcceptanceData.TxAcceptanceData {
if !txAcceptance.IsAccepted {
continue
}
acceptedTxs = append(acceptedTxs, txAcceptance.Tx)
}
}
sort.Slice(acceptedTxs, func(i, j int) bool {
return daghash.LessTxID(acceptedTxs[i].ID(), acceptedTxs[j].ID())
})
acceptedIDMerkleTree := BuildIDMerkleTreeStore(acceptedTxs)
return acceptedIDMerkleTree.Root()
}
func (node *blockNode) validateAcceptedIDMerkleRoot(dag *BlockDAG, txsAcceptanceData MultiBlockTxsAcceptanceData) error {
if node.isGenesis() {
return nil
}
calculatedAccepetedIDMerkleRoot := calculateAcceptedIDMerkleRoot(txsAcceptanceData)
header := node.Header()
if !header.AcceptedIDMerkleRoot.IsEqual(calculatedAccepetedIDMerkleRoot) {
str := fmt.Sprintf("block accepted ID merkle root is invalid - block "+
"header indicates %s, but calculated value is %s",
header.AcceptedIDMerkleRoot, calculatedAccepetedIDMerkleRoot)
return ruleError(ErrBadMerkleRoot, str)
}
return nil
}
// connectBlock handles connecting the passed node/block to the DAG.
//
// This function MUST be called with the DAG state lock held (for writes).
func (dag *BlockDAG) connectBlock(node *blockNode,
block *util.Block, fastAdd bool) (*chainUpdates, error) {
// No warnings about unknown rules or versions until the DAG is
// current.
if dag.isCurrent() {
// Warn if any unknown new rules are either about to activate or
// have already been activated.
if err := dag.warnUnknownRuleActivations(node); err != nil {
return nil, err
}
// Warn if a high enough percentage of the last blocks have
// unexpected versions.
if err := dag.warnUnknownVersions(node); err != nil {
return nil, err
}
}
if err := dag.checkFinalityRules(node); err != nil {
return nil, err
}
if err := dag.validateGasLimit(block); err != nil {
return nil, err
}
newBlockUTXO, txsAcceptanceData, newBlockFeeData, err := node.verifyAndBuildUTXO(dag, block.Transactions(), fastAdd)
if err != nil {
newErrString := fmt.Sprintf("error verifying UTXO for %s: %s", node, err)
if err, ok := err.(RuleError); ok {
return nil, ruleError(err.ErrorCode, newErrString)
}
return nil, errors.New(newErrString)
}
err = node.validateCoinbaseTransaction(dag, block, txsAcceptanceData)
if err != nil {
return nil, err
}
// Apply all changes to the DAG.
virtualUTXODiff, virtualTxsAcceptanceData, chainUpdates, err := dag.applyDAGChanges(node, newBlockUTXO, fastAdd)
if err != nil {
// Since all validation logic has already ran, if applyDAGChanges errors out,
// this means we have a problem in the internal structure of the DAG - a problem which is
// irrecoverable, and it would be a bad idea to attempt adding any more blocks to the DAG.
// Therefore - in such cases we panic.
panic(err)
}
err = dag.saveChangesFromBlock(block, virtualUTXODiff, txsAcceptanceData, virtualTxsAcceptanceData, newBlockFeeData)
if err != nil {
return nil, err
}
return chainUpdates, nil
}
func (dag *BlockDAG) saveChangesFromBlock(block *util.Block, virtualUTXODiff *UTXODiff,
txsAcceptanceData MultiBlockTxsAcceptanceData, virtualTxsAcceptanceData MultiBlockTxsAcceptanceData,
feeData compactFeeData) error {
// Write any block status changes to DB before updating the DAG state.
err := dag.index.flushToDB()
if err != nil {
return err
}
// Atomically insert info into the database.
err = dag.db.Update(func(dbTx database.Tx) error {
err := dag.utxoDiffStore.flushToDB(dbTx)
if err != nil {
return err
}
// Update best block state.
state := &dagState{
TipHashes: dag.TipHashes(),
LastFinalityPoint: dag.lastFinalityPoint.hash,
}
err = dbPutDAGState(dbTx, state)
if err != nil {
return err
}
// Update the UTXO set using the diffSet that was melded into the
// full UTXO set.
err = dbPutUTXODiff(dbTx, virtualUTXODiff)
if err != nil {
return err
}
// Scan all accepted transactions and register any subnetwork registry
// transaction. If any subnetwork registry transaction is not well-formed,
// fail the entire block.
err = registerSubnetworks(dbTx, block.Transactions())
if err != nil {
return err
}
blockID, err := createBlockID(dbTx, block.Hash())
if err != nil {
return err
}
// Allow the index manager to call each of the currently active
// optional indexes with the block being connected so they can
// update themselves accordingly.
if dag.indexManager != nil {
err := dag.indexManager.ConnectBlock(dbTx, block, blockID, dag, txsAcceptanceData, virtualTxsAcceptanceData)
if err != nil {
return err
}
}
// Apply the fee data into the database
return dbStoreFeeData(dbTx, block.Hash(), feeData)
})
if err != nil {
return err
}
dag.utxoDiffStore.clearDirtyEntries()
return nil
}
func (dag *BlockDAG) validateGasLimit(block *util.Block) error {
var currentSubnetworkID *subnetworkid.SubnetworkID
var currentSubnetworkGasLimit uint64
var currentGasUsage uint64
var err error
// We assume here that transactions are ordered by subnetworkID,
// since it was already validated in checkTransactionSanity
for _, tx := range block.Transactions() {
msgTx := tx.MsgTx()
// In native and Built-In subnetworks all txs must have Gas = 0, and that was already validated in checkTransactionSanity
// Therefore - no need to check them here.
if msgTx.SubnetworkID.IsEqual(subnetworkid.SubnetworkIDNative) || msgTx.SubnetworkID.IsBuiltIn() {
continue
}
if !msgTx.SubnetworkID.IsEqual(currentSubnetworkID) {
currentSubnetworkID = &msgTx.SubnetworkID
currentGasUsage = 0
currentSubnetworkGasLimit, err = dag.SubnetworkStore.GasLimit(currentSubnetworkID)
if err != nil {
return errors.Errorf("Error getting gas limit for subnetworkID '%s': %s", currentSubnetworkID, err)
}
}
newGasUsage := currentGasUsage + msgTx.Gas
if newGasUsage < currentGasUsage { // check for overflow
str := fmt.Sprintf("Block gas usage in subnetwork with ID %s has overflown", currentSubnetworkID)
return ruleError(ErrInvalidGas, str)
}
if newGasUsage > currentSubnetworkGasLimit {
str := fmt.Sprintf("Block wastes too much gas in subnetwork with ID %s", currentSubnetworkID)
return ruleError(ErrInvalidGas, str)
}
currentGasUsage = newGasUsage
}
return nil
}
// LastFinalityPointHash returns the hash of the last finality point
func (dag *BlockDAG) LastFinalityPointHash() *daghash.Hash {
if dag.lastFinalityPoint == nil {
return nil
}
return dag.lastFinalityPoint.hash
}
// checkFinalityRules checks the new block does not violate the finality rules
// specifically - the new block selectedParent chain should contain the old finality point
func (dag *BlockDAG) checkFinalityRules(newNode *blockNode) error {
// the genesis block can not violate finality rules
if newNode.isGenesis() {
return nil
}
for currentNode := newNode; currentNode != dag.lastFinalityPoint; currentNode = currentNode.selectedParent {
// If we went past dag's last finality point without encountering it -
// the new block has violated finality.
if currentNode.blueScore <= dag.lastFinalityPoint.blueScore {
return ruleError(ErrFinality, "The last finality point is not in the selected chain of this block")
}
}
return nil
}
// updateFinalityPoint updates the dag's last finality point if necessary.
func (dag *BlockDAG) updateFinalityPoint() {
selectedTip := dag.selectedTip()
// if the selected tip is the genesis block - it should be the new finality point
if selectedTip.isGenesis() {
dag.lastFinalityPoint = selectedTip
return
}
// We are looking for a new finality point only if the new block's finality score is higher
// by 2 than the existing finality point's
if selectedTip.finalityScore(dag) < dag.lastFinalityPoint.finalityScore(dag)+2 {
return
}
var currentNode *blockNode
for currentNode = selectedTip.selectedParent; ; currentNode = currentNode.selectedParent {
// We look for the first node in the selected parent chain that has a higher finality score than the last finality point.
if currentNode.selectedParent.finalityScore(dag) == dag.lastFinalityPoint.finalityScore(dag) {
break
}
}
dag.lastFinalityPoint = currentNode
spawn(func() {
dag.finalizeNodesBelowFinalityPoint(true)
})
}
func (dag *BlockDAG) finalizeNodesBelowFinalityPoint(deleteDiffData bool) {
queue := make([]*blockNode, 0, len(dag.lastFinalityPoint.parents))
for _, parent := range dag.lastFinalityPoint.parents {
queue = append(queue, parent)
}
var blockHashesToDelete []*daghash.Hash
if deleteDiffData {
blockHashesToDelete = make([]*daghash.Hash, 0, dag.dagParams.FinalityInterval)
}
for len(queue) > 0 {
var current *blockNode
current, queue = queue[0], queue[1:]
if !current.isFinalized {
current.isFinalized = true
if deleteDiffData {
blockHashesToDelete = append(blockHashesToDelete, current.hash)
}
for _, parent := range current.parents {
queue = append(queue, parent)
}
}
}
if deleteDiffData {
err := dag.db.Update(func(dbTx database.Tx) error {
return dag.utxoDiffStore.removeBlocksDiffData(dbTx, blockHashesToDelete)
})
if err != nil {
panic(fmt.Sprintf("Error removing diff data from utxoDiffStore: %s", err))
}
}
}
// IsKnownFinalizedBlock returns whether the block is below the finality point.
// IsKnownFinalizedBlock might be false-negative because node finality status is
// updated in a separate goroutine. To get a definite answer if a block
// is finalized or not, use dag.checkFinalityRules.
func (dag *BlockDAG) IsKnownFinalizedBlock(blockHash *daghash.Hash) bool {
node := dag.index.LookupNode(blockHash)
return node != nil && node.isFinalized
}
// NextBlockCoinbaseTransaction prepares the coinbase transaction for the next mined block
//
// This function CAN'T be called with the DAG lock held.
func (dag *BlockDAG) NextBlockCoinbaseTransaction(scriptPubKey []byte, extraData []byte) (*util.Tx, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.NextBlockCoinbaseTransactionNoLock(scriptPubKey, extraData)
}
// NextBlockCoinbaseTransactionNoLock prepares the coinbase transaction for the next mined block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) NextBlockCoinbaseTransactionNoLock(scriptPubKey []byte, extraData []byte) (*util.Tx, error) {
txsAcceptanceData, err := dag.TxsAcceptedByVirtual()
if err != nil {
return nil, err
}
return dag.virtual.blockNode.expectedCoinbaseTransaction(dag, txsAcceptanceData, scriptPubKey, extraData)
}
// NextAcceptedIDMerkleRoot prepares the acceptedIDMerkleRoot for the next mined block
//
// This function CAN'T be called with the DAG lock held.
func (dag *BlockDAG) NextAcceptedIDMerkleRoot() (*daghash.Hash, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.NextAcceptedIDMerkleRootNoLock()
}
// NextAcceptedIDMerkleRootNoLock prepares the acceptedIDMerkleRoot for the next mined block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) NextAcceptedIDMerkleRootNoLock() (*daghash.Hash, error) {
txsAcceptanceData, err := dag.TxsAcceptedByVirtual()
if err != nil {
return nil, err
}
return calculateAcceptedIDMerkleRoot(txsAcceptanceData), nil
}
// TxsAcceptedByVirtual retrieves transactions accepted by the current virtual block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) TxsAcceptedByVirtual() (MultiBlockTxsAcceptanceData, error) {
_, txsAcceptanceData, err := dag.pastUTXO(&dag.virtual.blockNode)
return txsAcceptanceData, err
}
// TxsAcceptedByBlockHash retrieves transactions accepted by the given block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) TxsAcceptedByBlockHash(blockHash *daghash.Hash) (MultiBlockTxsAcceptanceData, error) {
node := dag.index.LookupNode(blockHash)
if node == nil {
return nil, errors.Errorf("Couldn't find block %s", blockHash)
}
_, txsAcceptanceData, err := dag.pastUTXO(node)
return txsAcceptanceData, err
}
// BlockPastUTXO retrieves the past UTXO of this block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) BlockPastUTXO(blockHash *daghash.Hash) (UTXOSet, error) {
node := dag.index.LookupNode(blockHash)
if node == nil {
return nil, errors.Errorf("Couldn't find block %s", blockHash)
}
pastUTXO, _, err := dag.pastUTXO(node)
return pastUTXO, err
}
// applyDAGChanges does the following:
// 1. Connects each of the new block's parents to the block.
// 2. Adds the new block to the DAG's tips.
// 3. Updates the DAG's full UTXO set.
// 4. Updates each of the tips' utxoDiff.
// 5. Applies the new virtual's blue score to all the unaccepted UTXOs
// 6. Updates the finality point of the DAG (if required).
//
// It returns the diff in the virtual block's UTXO set.
//
// This function MUST be called with the DAG state lock held (for writes).
func (dag *BlockDAG) applyDAGChanges(node *blockNode, newBlockUTXO UTXOSet, fastAdd bool) (
virtualUTXODiff *UTXODiff, virtualTxsAcceptanceData MultiBlockTxsAcceptanceData,
chainUpdates *chainUpdates, err error) {
if err = node.updateParents(dag, newBlockUTXO); err != nil {
return nil, nil, nil, errors.Wrapf(err, "failed updating parents of %s", node)
}
// Update the virtual block's parents (the DAG tips) to include the new block.
chainUpdates = dag.virtual.AddTip(node)
// Build a UTXO set for the new virtual block
newVirtualUTXO, virtualTxsAcceptanceData, err := dag.pastUTXO(&dag.virtual.blockNode)
if err != nil {
return nil, nil, nil, errors.Wrap(err, "could not restore past UTXO for virtual")
}
// Apply new utxoDiffs to all the tips
err = updateTipsUTXO(dag, newVirtualUTXO)
if err != nil {
return nil, nil, nil, errors.Wrap(err, "failed updating the tips' UTXO")
}
// It is now safe to meld the UTXO set to base.
diffSet := newVirtualUTXO.(*DiffUTXOSet)
virtualUTXODiff = diffSet.UTXODiff
err = dag.meldVirtualUTXO(diffSet)
if err != nil {
return nil, nil, nil, errors.Wrap(err, "failed melding the virtual UTXO")
}
dag.index.SetStatusFlags(node, statusValid)
// And now we can update the finality point of the DAG (if required)
dag.updateFinalityPoint()
return virtualUTXODiff, virtualTxsAcceptanceData, chainUpdates, nil
}
func (dag *BlockDAG) meldVirtualUTXO(newVirtualUTXODiffSet *DiffUTXOSet) error {
dag.utxoLock.Lock()
defer dag.utxoLock.Unlock()
return newVirtualUTXODiffSet.meldToBase()
}
func (node *blockNode) diffFromTxs(pastUTXO UTXOSet, transactions []*util.Tx) (*UTXODiff, error) {
diff := NewUTXODiff()
for _, tx := range transactions {
txDiff, err := pastUTXO.diffFromTx(tx.MsgTx(), UnacceptedBlueScore)
if err != nil {
return nil, err
}
diff, err = diff.WithDiff(txDiff)
if err != nil {
return nil, err
}
}
return diff, nil
}
// verifyAndBuildUTXO verifies all transactions in the given block and builds its UTXO
// to save extra traversals it returns the transactions acceptance data and the compactFeeData for the new block
func (node *blockNode) verifyAndBuildUTXO(dag *BlockDAG, transactions []*util.Tx, fastAdd bool) (
newBlockUTXO UTXOSet, txsAcceptanceData MultiBlockTxsAcceptanceData, newBlockFeeData compactFeeData, err error) {
pastUTXO, txsAcceptanceData, err := dag.pastUTXO(node)
if err != nil {
return nil, nil, nil, err
}
err = node.validateAcceptedIDMerkleRoot(dag, txsAcceptanceData)
if err != nil {
return nil, nil, nil, err
}
feeData, err := dag.checkConnectToPastUTXO(node, pastUTXO, transactions, fastAdd)
if err != nil {
return nil, nil, nil, err
}
diffFromTxs, err := node.diffFromTxs(pastUTXO, transactions)
if err != nil {
return nil, nil, nil, err
}
utxo, err := pastUTXO.WithDiff(diffFromTxs)
if err != nil {
return nil, nil, nil, err
}
calculatedMultisetHash := utxo.Multiset().Hash()
if !calculatedMultisetHash.IsEqual(node.utxoCommitment) {
str := fmt.Sprintf("block %s UTXO commitment is invalid - block "+
"header indicates %s, but calculated value is %s", node.hash,
node.utxoCommitment, calculatedMultisetHash)
return nil, nil, nil, ruleError(ErrBadUTXOCommitment, str)
}
return utxo, txsAcceptanceData, feeData, nil
}
// TxAcceptanceData stores a transaction together with an indication
// if it was accepted or not by some block
type TxAcceptanceData struct {
Tx *util.Tx
IsAccepted bool
}
// BlockTxsAcceptanceData stores all transactions in a block with an indication
// if they were accepted or not by some other block
type BlockTxsAcceptanceData struct {
BlockHash daghash.Hash
TxAcceptanceData []TxAcceptanceData
}
// MultiBlockTxsAcceptanceData stores data about which transactions were accepted by a block
// It's a slice of the block's blues block IDs and their transaction acceptance data
type MultiBlockTxsAcceptanceData []BlockTxsAcceptanceData
// FindAcceptanceData finds the BlockTxsAcceptanceData that matches blockHash
func (data MultiBlockTxsAcceptanceData) FindAcceptanceData(blockHash *daghash.Hash) (*BlockTxsAcceptanceData, bool) {
for _, acceptanceData := range data {
if acceptanceData.BlockHash.IsEqual(blockHash) {
return &acceptanceData, true
}
}
return nil, false
}
func genesisPastUTXO(virtual *virtualBlock) UTXOSet {
// The genesis has no past UTXO, so we create an empty UTXO
// set by creating a diff UTXO set with the virtual UTXO
// set, and adding all of its entries in toRemove
diff := NewUTXODiff()
for outpoint, entry := range virtual.utxoSet.utxoCollection {
diff.toRemove[outpoint] = entry
}
genesisPastUTXO := UTXOSet(NewDiffUTXOSet(virtual.utxoSet, diff))
return genesisPastUTXO
}
func (node *blockNode) fetchBlueBlocks(db database.DB) ([]*util.Block, error) {
blueBlocks := make([]*util.Block, len(node.blues))
err := db.View(func(dbTx database.Tx) error {
for i, blueBlockNode := range node.blues {
blueBlock, err := dbFetchBlockByNode(dbTx, blueBlockNode)
if err != nil {
return err
}
blueBlocks[i] = blueBlock
}
return nil
})
return blueBlocks, err
}
// applyBlueBlocks adds all transactions in the blue blocks to the selectedParent's UTXO set
// Purposefully ignoring failures - these are just unaccepted transactions
// Writing down which transactions were accepted or not in txsAcceptanceData
func (node *blockNode) applyBlueBlocks(acceptedSelectedParentUTXO UTXOSet, selectedParentAcceptanceData []TxAcceptanceData, blueBlocks []*util.Block) (
pastUTXO UTXOSet, multiBlockTxsAcceptanceData MultiBlockTxsAcceptanceData, err error) {
pastUTXO = acceptedSelectedParentUTXO
multiBlockTxsAcceptanceData = MultiBlockTxsAcceptanceData{BlockTxsAcceptanceData{
BlockHash: *node.selectedParent.hash,
TxAcceptanceData: selectedParentAcceptanceData,
}}
// Add blueBlocks to multiBlockTxsAcceptanceData bottom-to-top instead of
// top-to-bottom. This is so that anyone who iterates over it would process
// blocks (and transactions) in their order of appearance in the DAG.
// We skip the selected parent, because we calculated its UTXO before.
for i := len(blueBlocks) - 2; i >= 0; i-- {
blueBlock := blueBlocks[i]
transactions := blueBlock.Transactions()
blockTxsAcceptanceData := BlockTxsAcceptanceData{
BlockHash: *blueBlock.Hash(),
TxAcceptanceData: make([]TxAcceptanceData, len(transactions)),
}
for i, tx := range blueBlock.Transactions() {
var isAccepted bool
// Coinbase transaction outputs are added to the UTXO
// only if they are in the selected parent chain.
if tx.IsCoinBase() {
isAccepted = false
} else {
isAccepted, err = pastUTXO.AddTx(tx.MsgTx(), node.blueScore)
if err != nil {
return nil, nil, err
}
}
blockTxsAcceptanceData.TxAcceptanceData[i] = TxAcceptanceData{Tx: tx, IsAccepted: isAccepted}
}
multiBlockTxsAcceptanceData = append(multiBlockTxsAcceptanceData, blockTxsAcceptanceData)
}
return pastUTXO, multiBlockTxsAcceptanceData, nil
}
// updateParents adds this block to the children sets of its parents
// and updates the diff of any parent whose DiffChild is this block
func (node *blockNode) updateParents(dag *BlockDAG, newBlockUTXO UTXOSet) error {
node.updateParentsChildren()
return node.updateParentsDiffs(dag, newBlockUTXO)
}
// updateParentsDiffs updates the diff of any parent whose DiffChild is this block
func (node *blockNode) updateParentsDiffs(dag *BlockDAG, newBlockUTXO UTXOSet) error {
virtualDiffFromNewBlock, err := dag.virtual.utxoSet.diffFrom(newBlockUTXO)
if err != nil {
return err
}
err = dag.utxoDiffStore.setBlockDiff(node, virtualDiffFromNewBlock)
if err != nil {
return err
}
for _, parent := range node.parents {
diffChild, err := dag.utxoDiffStore.diffChildByNode(parent)
if err != nil {
return err
}
if diffChild == nil {
parentUTXO, err := dag.restoreUTXO(parent)
if err != nil {
return err
}
err = dag.utxoDiffStore.setBlockDiffChild(parent, node)
if err != nil {
return err
}
diff, err := newBlockUTXO.diffFrom(parentUTXO)
if err != nil {
return err
}
err = dag.utxoDiffStore.setBlockDiff(parent, diff)
if err != nil {
return err
}
}
}
return nil
}
// pastUTXO returns the UTXO of a given block's past
// To save traversals over the blue blocks, it also returns the transaction acceptance data for
// all blue blocks
func (dag *BlockDAG) pastUTXO(node *blockNode) (
pastUTXO UTXOSet, bluesTxsAcceptanceData MultiBlockTxsAcceptanceData, err error) {
if node.isGenesis() {
return genesisPastUTXO(dag.virtual), MultiBlockTxsAcceptanceData{}, nil
}
selectedParentUTXO, err := dag.restoreUTXO(node.selectedParent)
if err != nil {
return nil, nil, err
}
blueBlocks, err := node.fetchBlueBlocks(dag.db)
if err != nil {
return nil, nil, err
}
selectedParent := blueBlocks[len(blueBlocks)-1]
acceptedSelectedParentUTXO, selectedParentAcceptanceData, err := node.acceptSelectedParentTransactions(selectedParent, selectedParentUTXO)
if err != nil {
return nil, nil, err
}
return node.applyBlueBlocks(acceptedSelectedParentUTXO, selectedParentAcceptanceData, blueBlocks)
}
func (node *blockNode) acceptSelectedParentTransactions(selectedParent *util.Block, selectedParentUTXO UTXOSet) (acceptedSelectedParentUTXO UTXOSet, txAcceptanceData []TxAcceptanceData, err error) {
diff := NewUTXODiff()
txAcceptanceData = make([]TxAcceptanceData, len(selectedParent.Transactions()))
for i, tx := range selectedParent.Transactions() {
txAcceptanceData[i] = TxAcceptanceData{
Tx: tx,
IsAccepted: true,
}
acceptanceDiff, err := selectedParentUTXO.diffFromAcceptedTx(tx.MsgTx(), node.blueScore)
if err != nil {
return nil, nil, err
}
diff, err = diff.WithDiff(acceptanceDiff)
if err != nil {
return nil, nil, err
}
}
acceptedSelectedParentUTXO, err = selectedParentUTXO.WithDiff(diff)
if err != nil {
return nil, nil, err
}
return acceptedSelectedParentUTXO, txAcceptanceData, nil
}
// restoreUTXO restores the UTXO of a given block from its diff
func (dag *BlockDAG) restoreUTXO(node *blockNode) (UTXOSet, error) {
stack := []*blockNode{}
for current := node; current != nil; {
stack = append(stack, current)
var err error
current, err = dag.utxoDiffStore.diffChildByNode(current)
if err != nil {
return nil, err
}
}
utxo := UTXOSet(dag.virtual.utxoSet)
for i := len(stack) - 1; i >= 0; i-- {
diff, err := dag.utxoDiffStore.diffByNode(stack[i])
if err != nil {
return nil, err
}
utxo, err = utxo.WithDiff(diff)
if err != nil {
return nil, err
}
}
return utxo, nil
}
// updateTipsUTXO builds and applies new diff UTXOs for all the DAG's tips
func updateTipsUTXO(dag *BlockDAG, virtualUTXO UTXOSet) error {
for _, tip := range dag.virtual.parents {
tipUTXO, err := dag.restoreUTXO(tip)
if err != nil {
return err
}
diff, err := virtualUTXO.diffFrom(tipUTXO)
if err != nil {
return err
}
err = dag.utxoDiffStore.setBlockDiff(tip, diff)
if err != nil {
return err
}
}
return nil
}
// isCurrent returns whether or not the DAG believes it is current. Several
// factors are used to guess, but the key factors that allow the DAG to
// believe it is current are:
// - Latest block has a timestamp newer than 24 hours ago
//
// This function MUST be called with the DAG state lock held (for reads).
func (dag *BlockDAG) isCurrent() bool {
// Not current if the virtual's selected parent has a timestamp
// before 24 hours ago. If the DAG is empty, we take the genesis
// block timestamp.
//
// The DAG appears to be current if none of the checks reported
// otherwise.
var dagTimestamp int64
selectedTip := dag.selectedTip()
if selectedTip == nil {
dagTimestamp = dag.dagParams.GenesisBlock.Header.Timestamp.Unix()
} else {
dagTimestamp = selectedTip.timestamp
}
minus24Hours := dag.timeSource.AdjustedTime().Add(-24 * time.Hour).Unix()
return dagTimestamp >= minus24Hours
}
// IsCurrent returns whether or not the DAG believes it is current. Several
// factors are used to guess, but the key factors that allow the DAG to
// believe it is current are:
// - Latest block has a timestamp newer than 24 hours ago
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsCurrent() bool {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.isCurrent()
}
// selectedTip returns the current selected tip for the DAG.
// It will return nil if there is no tip.
func (dag *BlockDAG) selectedTip() *blockNode {
return dag.virtual.selectedParent
}
// SelectedTipHeader returns the header of the current selected tip for the DAG.
// It will return nil if there is no tip.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) SelectedTipHeader() *wire.BlockHeader {
selectedTip := dag.selectedTip()
if selectedTip == nil {
return nil
}
return selectedTip.Header()
}
// SelectedTipHash returns the hash of the current selected tip for the DAG.
// It will return nil if there is no tip.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) SelectedTipHash() *daghash.Hash {
selectedTip := dag.selectedTip()
if selectedTip == nil {
return nil
}
return selectedTip.hash
}
// UTXOSet returns the DAG's UTXO set
func (dag *BlockDAG) UTXOSet() *FullUTXOSet {
return dag.virtual.utxoSet
}
// CalcPastMedianTime returns the past median time of the DAG.
func (dag *BlockDAG) CalcPastMedianTime() time.Time {
return dag.virtual.tips().bluest().PastMedianTime(dag)
}
// GetUTXOEntry returns the requested unspent transaction output. The returned
// instance must be treated as immutable since it is shared by all callers.
//
// This function is safe for concurrent access. However, the returned entry (if
// any) is NOT.
func (dag *BlockDAG) GetUTXOEntry(outpoint wire.Outpoint) (*UTXOEntry, bool) {
return dag.virtual.utxoSet.get(outpoint)
}
// BlueScoreByBlockHash returns the blue score of a block with the given hash.
func (dag *BlockDAG) BlueScoreByBlockHash(hash *daghash.Hash) (uint64, error) {
node := dag.index.LookupNode(hash)
if node == nil {
return 0, errors.Errorf("block %s is unknown", hash)
}
return node.blueScore, nil
}
// BlockConfirmationsByHash returns the confirmations number for a block with the
// given hash. See blockConfirmations for further details.
//
// This function is safe for concurrent access
func (dag *BlockDAG) BlockConfirmationsByHash(hash *daghash.Hash) (uint64, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.BlockConfirmationsByHashNoLock(hash)
}
// BlockConfirmationsByHashNoLock is lock free version of BlockConfirmationsByHash
//
// This function is unsafe for concurrent access.
func (dag *BlockDAG) BlockConfirmationsByHashNoLock(hash *daghash.Hash) (uint64, error) {
if hash.IsEqual(&daghash.ZeroHash) {
return 0, nil
}
node := dag.index.LookupNode(hash)
if node == nil {
return 0, errors.Errorf("block %s is unknown", hash)
}
return dag.blockConfirmations(node)
}
// UTXOCommitment returns a commitment to the dag's current UTXOSet
func (dag *BlockDAG) UTXOCommitment() string {
return dag.UTXOSet().UTXOMultiset.Hash().String()
}
// blockConfirmations returns the current confirmations number of the given node
// The confirmations number is defined as follows:
// * If the node is in the selected tip red set -> 0
// * If the node is the selected tip -> 1
// * Otherwise -> selectedTip.blueScore - acceptingBlock.blueScore + 2
func (dag *BlockDAG) blockConfirmations(node *blockNode) (uint64, error) {
if node == dag.selectedTip() {
return 1, nil
}
acceptingBlock, err := dag.acceptingBlock(node)
if err != nil {
return 0, err
}
// if acceptingBlock is nil, the node is red
if acceptingBlock == nil {
return 0, nil
}
return dag.selectedTip().blueScore - acceptingBlock.blueScore + 2, nil
}
// acceptingBlock finds the node in the selected-parent chain that had accepted
// the given node
func (dag *BlockDAG) acceptingBlock(node *blockNode) (*blockNode, error) {
// Return an error if the node is the virtual block
if node == &dag.virtual.blockNode {
return nil, errors.New("cannot get acceptingBlock for virtual")
}
// If the node is a chain-block itself, the accepting block is its chain-child
if dag.IsInSelectedParentChain(node.hash) {
if len(node.children) == 0 {
// If the node is the selected tip, it doesn't have an accepting block
return nil, nil
}
for _, child := range node.children {
if dag.IsInSelectedParentChain(child.hash) {
return child, nil
}
}
return nil, errors.Errorf("chain block %s does not have a chain child", node.hash)
}
// Find the only chain block that may contain the node in its blues
candidateAcceptingBlock := dag.oldestChainBlockWithBlueScoreGreaterThan(node.blueScore)
// if no candidate is found, it means that the node has same or more
// blue score than the selected tip and is found in its anticone, so
// it doesn't have an accepting block
if candidateAcceptingBlock == nil {
return nil, nil
}
// candidateAcceptingBlock is the accepting block only if it actually contains
// the node in its blues
for _, blue := range candidateAcceptingBlock.blues {
if blue == node {
return candidateAcceptingBlock, nil
}
}
// Otherwise, the node is red or in the selected tip anticone, and
// doesn't have an accepting block
return nil, nil
}
// oldestChainBlockWithBlueScoreGreaterThan finds the oldest chain block with a blue score
// greater than blueScore. If no such block exists, this method returns nil
func (dag *BlockDAG) oldestChainBlockWithBlueScoreGreaterThan(blueScore uint64) *blockNode {
chainBlockIndex, ok := util.SearchSlice(len(dag.virtual.selectedParentChainSlice), func(i int) bool {
selectedPathNode := dag.virtual.selectedParentChainSlice[i]
return selectedPathNode.blueScore > blueScore
})
if !ok {
return nil
}
return dag.virtual.selectedParentChainSlice[chainBlockIndex]
}
// IsInSelectedParentChain returns whether or not a block hash is found in the selected
// parent chain.
//
// This method MUST be called with the DAG lock held
func (dag *BlockDAG) IsInSelectedParentChain(blockHash *daghash.Hash) bool {
return dag.virtual.selectedParentChainSet.containsHash(blockHash)
}
// SelectedParentChain returns the selected parent chain starting from startHash (exclusive)
// up to the virtual (exclusive). If startHash is nil then the genesis block is used. If
// startHash is not within the select parent chain, go down its own selected parent chain,
// while collecting each block hash in removedChainHashes, until reaching a block within
// the main selected parent chain.
//
// This method MUST be called with the DAG lock held
func (dag *BlockDAG) SelectedParentChain(startHash *daghash.Hash) ([]*daghash.Hash, []*daghash.Hash, error) {
if startHash == nil {
startHash = dag.genesis.hash
}
if !dag.BlockExists(startHash) {
return nil, nil, errors.Errorf("startHash %s does not exist in the DAG", startHash)
}
// If startHash is not in the selected parent chain, go down its selected parent chain
// until we find a block that is in the main selected parent chain.
var removedChainHashes []*daghash.Hash
for !dag.IsInSelectedParentChain(startHash) {
removedChainHashes = append(removedChainHashes, startHash)
node := dag.index.LookupNode(startHash)
startHash = node.selectedParent.hash
}
// Find the index of the startHash in the selectedParentChainSlice
startHashIndex := len(dag.virtual.selectedParentChainSlice) - 1
for startHashIndex >= 0 {
node := dag.virtual.selectedParentChainSlice[startHashIndex]
if node.hash.IsEqual(startHash) {
break
}
startHashIndex--
}
// Copy all the addedChainHashes starting from startHashIndex (exclusive)
addedChainHashes := make([]*daghash.Hash, len(dag.virtual.selectedParentChainSlice)-startHashIndex-1)
for i, node := range dag.virtual.selectedParentChainSlice[startHashIndex+1:] {
addedChainHashes[i] = node.hash
}
return removedChainHashes, addedChainHashes, nil
}
// ChainHeight return the chain-height of the selected tip. In other words - it returns
// the length of the dag's selected-parent chain
func (dag *BlockDAG) ChainHeight() uint64 {
return dag.selectedTip().chainHeight
}
// VirtualBlueScore returns the blue score of the current virtual block
func (dag *BlockDAG) VirtualBlueScore() uint64 {
return dag.virtual.blueScore
}
// BlockCount returns the number of blocks in the DAG
func (dag *BlockDAG) BlockCount() uint64 {
return dag.blockCount
}
// TipHashes returns the hashes of the DAG's tips
func (dag *BlockDAG) TipHashes() []*daghash.Hash {
return dag.virtual.tips().hashes()
}
// CurrentBits returns the bits of the tip with the lowest bits, which also means it has highest difficulty.
func (dag *BlockDAG) CurrentBits() uint32 {
tips := dag.virtual.tips()
minBits := uint32(math.MaxUint32)
for _, tip := range tips {
if minBits > tip.Header().Bits {
minBits = tip.Header().Bits
}
}
return minBits
}
// HeaderByHash returns the block header identified by the given hash or an
// error if it doesn't exist.
func (dag *BlockDAG) HeaderByHash(hash *daghash.Hash) (*wire.BlockHeader, error) {
node := dag.index.LookupNode(hash)
if node == nil {
err := errors.Errorf("block %s is not known", hash)
return &wire.BlockHeader{}, err
}
return node.Header(), nil
}
// BlockChainHeightByHash returns the chain height of the block with the given
// hash in the DAG.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) BlockChainHeightByHash(hash *daghash.Hash) (uint64, error) {
node := dag.index.LookupNode(hash)
if node == nil {
str := fmt.Sprintf("block %s is not in the DAG", hash)
return 0, errNotInDAG(str)
}
return node.chainHeight, nil
}
// ChildHashesByHash returns the child hashes of the block with the given hash in the
// DAG.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) ChildHashesByHash(hash *daghash.Hash) ([]*daghash.Hash, error) {
node := dag.index.LookupNode(hash)
if node == nil {
str := fmt.Sprintf("block %s is not in the DAG", hash)
return nil, errNotInDAG(str)
}
return node.children.hashes(), nil
}
// ChainHeightToHashRange returns a range of block hashes for the given start chain
// height and end hash, inclusive on both ends. The hashes are for all blocks that
// are ancestors of endHash with height greater than or equal to startChainHeight.
// The end hash must belong to a block that is known to be valid.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) ChainHeightToHashRange(startChainHeight uint64,
endHash *daghash.Hash, maxResults int) ([]*daghash.Hash, error) {
endNode := dag.index.LookupNode(endHash)
if endNode == nil {
return nil, errors.Errorf("no known block header with hash %s", endHash)
}
if !dag.index.NodeStatus(endNode).KnownValid() {
return nil, errors.Errorf("block %s is not yet validated", endHash)
}
endChainHeight := endNode.chainHeight
if startChainHeight < 0 {
return nil, errors.Errorf("start chain height (%d) is below 0", startChainHeight)
}
if startChainHeight > endChainHeight {
return nil, errors.Errorf("start chain height (%d) is past end chain height (%d)",
startChainHeight, endChainHeight)
}
resultsLength := int(endChainHeight - startChainHeight + 1)
if resultsLength > maxResults {
return nil, errors.Errorf("number of results (%d) would exceed max (%d)",
resultsLength, maxResults)
}
// Walk backwards from endChainHeight to startChainHeight, collecting block hashes.
node := endNode
hashes := make([]*daghash.Hash, resultsLength)
for i := resultsLength - 1; i >= 0; i-- {
hashes[i] = node.hash
node = node.selectedParent
}
return hashes, nil
}
// IntervalBlockHashes returns hashes for all blocks that are ancestors of
// endHash where the block height is a positive multiple of interval.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IntervalBlockHashes(endHash *daghash.Hash, interval uint64,
) ([]*daghash.Hash, error) {
endNode := dag.index.LookupNode(endHash)
if endNode == nil {
return nil, errors.Errorf("no known block header with hash %s", endHash)
}
if !dag.index.NodeStatus(endNode).KnownValid() {
return nil, errors.Errorf("block %s is not yet validated", endHash)
}
endChainHeight := endNode.chainHeight
resultsLength := endChainHeight / interval
hashes := make([]*daghash.Hash, resultsLength)
dag.virtual.mtx.Lock()
defer dag.virtual.mtx.Unlock()
blockNode := endNode
for index := endChainHeight / interval; index > 0; index-- {
blockHeight := index * interval
blockNode = blockNode.SelectedAncestor(blockHeight)
hashes[index-1] = blockNode.hash
}
return hashes, nil
}
// getBlueBlocksHashesBetween returns the hashes of the blocks after the provided
// start hash until the provided stop hash is reached, or up to the
// provided max number of block hashes.
//
// This function MUST be called with the DAG state lock held (for reads).
func (dag *BlockDAG) getBlueBlocksHashesBetween(startHash, stopHash *daghash.Hash, maxHashes uint64) ([]*daghash.Hash, error) {
nodes, err := dag.getBlueBlocksBetween(startHash, stopHash, maxHashes)
if err != nil {
return nil, err
}
hashes := make([]*daghash.Hash, len(nodes))
for i, node := range nodes {
hashes[i] = node.hash
}
return hashes, nil
}
func (dag *BlockDAG) getBlueBlocksBetween(startHash, stopHash *daghash.Hash, maxEntries uint64) ([]*blockNode, error) {
startNode := dag.index.LookupNode(startHash)
if startNode == nil {
return nil, errors.Errorf("Couldn't find start hash %s", startHash)
}
stopNode := dag.index.LookupNode(stopHash)
if stopNode == nil {
return nil, errors.Errorf("Couldn't find stop hash %s", stopHash)
}
// In order to get no more then maxEntries of blue blocks from
// the future of the start node (including itself), we iterate
// the selected parent chain of the stopNode and add the blues
// each node (including the stopNode itself). This is why the
// number of returned blocks will be
// stopNode.blueScore-startNode.blueScore+1.
// If stopNode.blueScore-startNode.blueScore+1 > maxEntries, we
// first iterate on the selected parent chain of the stop node
// until we find a new stop node
// where stopNode.blueScore-startNode.blueScore+1 <= maxEntries
for stopNode.blueScore-startNode.blueScore+1 > maxEntries {
stopNode = stopNode.selectedParent
}
// Populate and return the found nodes.
nodes := make([]*blockNode, 0, stopNode.blueScore-startNode.blueScore+1)
nodes = append(nodes, stopNode)
current := stopNode
for current.blueScore > startNode.blueScore {
for _, blue := range current.blues {
nodes = append(nodes, blue)
}
current = current.selectedParent
}
if current != startNode {
return nil, errors.Errorf("the start hash is not found in the " +
"selected parent chain of the stop hash")
}
reversedNodes := make([]*blockNode, len(nodes))
for i, node := range nodes {
reversedNodes[len(reversedNodes)-i-1] = node
}
return reversedNodes, nil
}
// GetBlueBlocksHashesBetween returns the hashes of the blue blocks after the
// provided start hash until the provided stop hash is reached, or up to the
// provided max number of block hashes.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) GetBlueBlocksHashesBetween(startHash, stopHash *daghash.Hash, maxHashes uint64) ([]*daghash.Hash, error) {
dag.dagLock.RLock()
hashes, err := dag.getBlueBlocksHashesBetween(startHash, stopHash, maxHashes)
if err != nil {
return nil, err
}
dag.dagLock.RUnlock()
return hashes, nil
}
// getBlueBlocksHeadersBetween returns the headers of the blue blocks after the
// provided start hash until the provided stop hash is reached, or up to the
// provided max number of block headers.
//
// This function MUST be called with the DAG state lock held (for reads).
func (dag *BlockDAG) getBlueBlocksHeadersBetween(startHash, stopHash *daghash.Hash, maxHeaders uint64) ([]*wire.BlockHeader, error) {
nodes, err := dag.getBlueBlocksBetween(startHash, stopHash, maxHeaders)
if err != nil {
return nil, err
}
headers := make([]*wire.BlockHeader, len(nodes))
for i, node := range nodes {
headers[i] = node.Header()
}
return headers, nil
}
// GetTopHeaders returns the top wire.MaxBlockHeadersPerMsg block headers ordered by height.
func (dag *BlockDAG) GetTopHeaders(startHash *daghash.Hash) ([]*wire.BlockHeader, error) {
startNode := &dag.virtual.blockNode
if startHash != nil {
startNode = dag.index.LookupNode(startHash)
if startNode == nil {
return nil, errors.Errorf("Couldn't find the start hash %s in the dag", startHash)
}
}
headers := make([]*wire.BlockHeader, 0, startNode.blueScore)
queue := newDownHeap()
queue.pushSet(startNode.parents)
visited := newSet()
for i := uint32(0); queue.Len() > 0 && len(headers) < wire.MaxBlockHeadersPerMsg; i++ {
var current *blockNode
current = queue.pop()
if !visited.contains(current) {
visited.add(current)
headers = append(headers, current.Header())
queue.pushSet(current.parents)
}
}
return headers, nil
}
// Lock locks the DAG's UTXO set for writing.
func (dag *BlockDAG) Lock() {
dag.dagLock.Lock()
}
// Unlock unlocks the DAG's UTXO set for writing.
func (dag *BlockDAG) Unlock() {
dag.dagLock.Unlock()
}
// RLock locks the DAG's UTXO set for reading.
func (dag *BlockDAG) RLock() {
dag.dagLock.RLock()
}
// RUnlock unlocks the DAG's UTXO set for reading.
func (dag *BlockDAG) RUnlock() {
dag.dagLock.RUnlock()
}
// GetBlueBlocksHeadersBetween returns the headers of the blocks after the provided
// start hash until the provided stop hash is reached, or up to the
// provided max number of block headers.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) GetBlueBlocksHeadersBetween(startHash, stopHash *daghash.Hash) ([]*wire.BlockHeader, error) {
dag.dagLock.RLock()
headers, err := dag.getBlueBlocksHeadersBetween(startHash, stopHash, wire.MaxBlockHeadersPerMsg)
if err != nil {
return nil, err
}
dag.dagLock.RUnlock()
return headers, nil
}
// SubnetworkID returns the node's subnetwork ID
func (dag *BlockDAG) SubnetworkID() *subnetworkid.SubnetworkID {
return dag.subnetworkID
}
// IndexManager provides a generic interface that is called when blocks are
// connected to the DAG for the purpose of supporting optional indexes.
type IndexManager interface {
// Init is invoked during DAG initialize in order to allow the index
// manager to initialize itself and any indexes it is managing. The
// channel parameter specifies a channel the caller can close to signal
// that the process should be interrupted. It can be nil if that
// behavior is not desired.
Init(database.DB, *BlockDAG, <-chan struct{}) error
// ConnectBlock is invoked when a new block has been connected to the
// DAG.
ConnectBlock(dbTx database.Tx, block *util.Block, blockID uint64, dag *BlockDAG, acceptedTxsData MultiBlockTxsAcceptanceData, virtualTxsAcceptanceData MultiBlockTxsAcceptanceData) error
}
// Config is a descriptor which specifies the blockDAG instance configuration.
type Config struct {
// DB defines the database which houses the blocks and will be used to
// store all metadata created by this package such as the utxo set.
//
// This field is required.
DB database.DB
// Interrupt specifies a channel the caller can close to signal that
// long running operations, such as catching up indexes or performing
// database migrations, should be interrupted.
//
// This field can be nil if the caller does not desire the behavior.
Interrupt <-chan struct{}
// DAGParams identifies which DAG parameters the DAG is associated
// with.
//
// This field is required.
DAGParams *dagconfig.Params
// TimeSource defines the median time source to use for things such as
// block processing and determining whether or not the DAG is current.
//
// The caller is expected to keep a reference to the time source as well
// and add time samples from other peers on the network so the local
// time is adjusted to be in agreement with other peers.
TimeSource MedianTimeSource
// SigCache defines a signature cache to use when when validating
// signatures. This is typically most useful when individual
// transactions are already being validated prior to their inclusion in
// a block such as what is usually done via a transaction memory pool.
//
// This field can be nil if the caller is not interested in using a
// signature cache.
SigCache *txscript.SigCache
// IndexManager defines an index manager to use when initializing the
// DAG and connecting blocks.
//
// This field can be nil if the caller does not wish to make use of an
// index manager.
IndexManager IndexManager
// SubnetworkID identifies which subnetwork the DAG is associated
// with.
//
// This field is required.
SubnetworkID *subnetworkid.SubnetworkID
}
// New returns a BlockDAG instance using the provided configuration details.
func New(config *Config) (*BlockDAG, error) {
// Enforce required config fields.
if config.DB == nil {
return nil, AssertError("BlockDAG.New database is nil")
}
if config.DAGParams == nil {
return nil, AssertError("BlockDAG.New DAG parameters nil")
}
if config.TimeSource == nil {
return nil, AssertError("BlockDAG.New timesource is nil")
}
params := config.DAGParams
targetTimePerBlock := int64(params.TargetTimePerBlock / time.Second)
index := newBlockIndex(config.DB, params)
dag := BlockDAG{
db: config.DB,
dagParams: params,
timeSource: config.TimeSource,
sigCache: config.SigCache,
indexManager: config.IndexManager,
targetTimePerBlock: targetTimePerBlock,
difficultyAdjustmentWindowSize: params.DifficultyAdjustmentWindowSize,
TimestampDeviationTolerance: params.TimestampDeviationTolerance,
powMaxBits: util.BigToCompact(params.PowMax),
index: index,
virtual: newVirtualBlock(nil, params.K),
orphans: make(map[daghash.Hash]*orphanBlock),
prevOrphans: make(map[daghash.Hash][]*orphanBlock),
warningCaches: newThresholdCaches(vbNumBits),
deploymentCaches: newThresholdCaches(dagconfig.DefinedDeployments),
blockCount: 0,
SubnetworkStore: newSubnetworkStore(config.DB),
subnetworkID: config.SubnetworkID,
}
dag.utxoDiffStore = newUTXODiffStore(&dag)
// Initialize the DAG state from the passed database. When the db
// does not yet contain any DAG state, both it and the DAG state
// will be initialized to contain only the genesis block.
err := dag.initDAGState()
if err != nil {
return nil, err
}
defer func() {
if err != nil {
err := dag.removeDAGState()
if err != nil {
panic(fmt.Sprintf("Couldn't remove the DAG State: %s", err))
}
}
}()
// Initialize and catch up all of the currently active optional indexes
// as needed.
if config.IndexManager != nil {
err = config.IndexManager.Init(dag.db, &dag, config.Interrupt)
if err != nil {
return nil, err
}
}
genesis := index.LookupNode(params.GenesisHash)
if genesis == nil {
genesisBlock := util.NewBlock(dag.dagParams.GenesisBlock)
var isOrphan bool
var delay time.Duration
isOrphan, delay, err = dag.ProcessBlock(genesisBlock, BFNone)
if err != nil {
return nil, err
}
if delay != 0 {
return nil, errors.New("Genesis block shouldn't be in the future")
}
if isOrphan {
return nil, errors.New("Genesis block is unexpectedly orphan")
}
genesis = index.LookupNode(params.GenesisHash)
}
// Save a reference to the genesis block.
dag.genesis = genesis
// Initialize rule change threshold state caches.
err = dag.initThresholdCaches()
if err != nil {
return nil, err
}
selectedTip := dag.selectedTip()
log.Infof("DAG state (chain height %d, hash %s)",
selectedTip.chainHeight, selectedTip.hash)
return &dag, nil
}