kaspad/netsync/manager.go
Ori Newman 5a99e4d2f3
[NOD-806] Exit early after panic (#650)
* [NOD-806] After panic, gracefully stop logs, and then exit immediately

* [NOD-806] Convert non-kaspad applications to use the new spawn

* [NOD-806] Fix disabled log at rpcclient

* [NOD-806] Refactor HandlePanic

* [NOD-806] Cancel Logger interface

* [NOD-806] Remove redundant spawn checks from waitgroup_test.go

* [NOD-806] Use caller subsystem when logging panics

* [NOD-806] Fix go vet errors
2020-03-08 11:24:37 +02:00

1173 lines
36 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package netsync
import (
"fmt"
"net"
"sync"
"sync/atomic"
"time"
"github.com/kaspanet/kaspad/blockdag"
"github.com/kaspanet/kaspad/dagconfig"
"github.com/kaspanet/kaspad/database"
"github.com/kaspanet/kaspad/mempool"
peerpkg "github.com/kaspanet/kaspad/peer"
"github.com/kaspanet/kaspad/util"
"github.com/kaspanet/kaspad/util/daghash"
"github.com/kaspanet/kaspad/wire"
"github.com/pkg/errors"
)
const (
// maxRejectedTxns is the maximum number of rejected transactions
// hashes to store in memory.
maxRejectedTxns = 1000
// maxRequestedBlocks is the maximum number of requested block
// hashes to store in memory.
maxRequestedBlocks = wire.MaxInvPerMsg
// maxRequestedTxns is the maximum number of requested transactions
// hashes to store in memory.
maxRequestedTxns = wire.MaxInvPerMsg
minGetSelectedTipInterval = time.Minute
minDAGTimeDelay = time.Minute
)
// newPeerMsg signifies a newly connected peer to the block handler.
type newPeerMsg struct {
peer *peerpkg.Peer
}
// blockMsg packages a kaspa block message and the peer it came from together
// so the block handler has access to that information.
type blockMsg struct {
block *util.Block
peer *peerpkg.Peer
isDelayedBlock bool
reply chan struct{}
}
// invMsg packages a kaspa inv message and the peer it came from together
// so the block handler has access to that information.
type invMsg struct {
inv *wire.MsgInv
peer *peerpkg.Peer
}
// donePeerMsg signifies a newly disconnected peer to the block handler.
type donePeerMsg struct {
peer *peerpkg.Peer
}
// removeFromSyncCandidatesMsg signifies to remove the given peer
// from the sync candidates.
type removeFromSyncCandidatesMsg struct {
peer *peerpkg.Peer
}
// txMsg packages a kaspa tx message and the peer it came from together
// so the block handler has access to that information.
type txMsg struct {
tx *util.Tx
peer *peerpkg.Peer
reply chan struct{}
}
// getSyncPeerMsg is a message type to be sent across the message channel for
// retrieving the current sync peer.
type getSyncPeerMsg struct {
reply chan int32
}
// processBlockResponse is a response sent to the reply channel of a
// processBlockMsg.
type processBlockResponse struct {
isOrphan bool
err error
}
// processBlockMsg is a message type to be sent across the message channel
// for requested a block is processed. Note this call differs from blockMsg
// above in that blockMsg is intended for blocks that came from peers and have
// extra handling whereas this message essentially is just a concurrent safe
// way to call ProcessBlock on the internal block DAG instance.
type processBlockMsg struct {
block *util.Block
flags blockdag.BehaviorFlags
reply chan processBlockResponse
}
// isCurrentMsg is a message type to be sent across the message channel for
// requesting whether or not the sync manager believes it is synced with the
// currently connected peers.
type isCurrentMsg struct {
reply chan bool
}
// pauseMsg is a message type to be sent across the message channel for
// pausing the sync manager. This effectively provides the caller with
// exclusive access over the manager until a receive is performed on the
// unpause channel.
type pauseMsg struct {
unpause <-chan struct{}
}
type selectedTipMsg struct {
selectedTipHash *daghash.Hash
peer *peerpkg.Peer
reply chan struct{}
}
type requestQueueAndSet struct {
queue []*wire.InvVect
set map[daghash.Hash]struct{}
}
// peerSyncState stores additional information that the SyncManager tracks
// about a peer.
type peerSyncState struct {
syncCandidate bool
lastSelectedTipRequest time.Time
isPendingForSelectedTip bool
requestQueueMtx sync.Mutex
requestQueues map[wire.InvType]*requestQueueAndSet
requestedTxns map[daghash.TxID]struct{}
requestedBlocks map[daghash.Hash]struct{}
}
// SyncManager is used to communicate block related messages with peers. The
// SyncManager is started as by executing Start() in a goroutine. Once started,
// it selects peers to sync from and starts the initial block download. Once the
// DAG is in sync, the SyncManager handles incoming block and header
// notifications and relays announcements of new blocks to peers.
type SyncManager struct {
peerNotifier PeerNotifier
started int32
shutdown int32
dag *blockdag.BlockDAG
txMemPool *mempool.TxPool
dagParams *dagconfig.Params
progressLogger *blockProgressLogger
msgChan chan interface{}
wg sync.WaitGroup
quit chan struct{}
// These fields should only be accessed from the messageHandler thread
rejectedTxns map[daghash.TxID]struct{}
requestedTxns map[daghash.TxID]struct{}
requestedBlocks map[daghash.Hash]struct{}
syncPeer *peerpkg.Peer
peerStates map[*peerpkg.Peer]*peerSyncState
}
// startSync will choose the sync peer among the available candidate peers to
// download/sync the blockDAG from. When syncing is already running, it
// simply returns. It also examines the candidates for any which are no longer
// candidates and removes them as needed.
func (sm *SyncManager) startSync() {
// Return now if we're already syncing.
if sm.syncPeer != nil {
return
}
var syncPeer *peerpkg.Peer
for peer, state := range sm.peerStates {
if !state.syncCandidate {
continue
}
if !peer.IsSelectedTipKnown() {
continue
}
// TODO(davec): Use a better algorithm to choose the sync peer.
// For now, just pick the first available candidate.
syncPeer = peer
}
// Start syncing from the sync peer if one was selected.
if syncPeer != nil {
// Clear the requestedBlocks if the sync peer changes, otherwise
// we may ignore blocks we need that the last sync peer failed
// to send.
sm.requestedBlocks = make(map[daghash.Hash]struct{})
log.Infof("Syncing to block %s from peer %s",
syncPeer.SelectedTipHash(), syncPeer.Addr())
syncPeer.PushGetBlockLocatorMsg(syncPeer.SelectedTipHash(), sm.dagParams.GenesisHash)
sm.syncPeer = syncPeer
return
}
if sm.shouldQueryPeerSelectedTips() {
hasSyncCandidates := false
for peer, state := range sm.peerStates {
if !state.syncCandidate {
continue
}
hasSyncCandidates = true
if time.Since(state.lastSelectedTipRequest) < minGetSelectedTipInterval {
continue
}
queueMsgGetSelectedTip(peer, state)
}
if !hasSyncCandidates {
log.Warnf("No sync peer candidates available")
}
}
}
func (sm *SyncManager) shouldQueryPeerSelectedTips() bool {
return sm.dag.AdjustedTime().Sub(sm.dag.CalcPastMedianTime()) > minDAGTimeDelay
}
func queueMsgGetSelectedTip(peer *peerpkg.Peer, state *peerSyncState) {
state.lastSelectedTipRequest = time.Now()
state.isPendingForSelectedTip = true
peer.QueueMessage(wire.NewMsgGetSelectedTip(), nil)
}
// isSyncCandidate returns whether or not the peer is a candidate to consider
// syncing from.
func (sm *SyncManager) isSyncCandidate(peer *peerpkg.Peer) bool {
// Typically a peer is not a candidate for sync if it's not a full node,
// however regression test is special in that the regression tool is
// not a full node and still needs to be considered a sync candidate.
if sm.dagParams == &dagconfig.RegressionNetParams {
// The peer is not a candidate if it's not coming from localhost
// or the hostname can't be determined for some reason.
host, _, err := net.SplitHostPort(peer.Addr())
if err != nil {
return false
}
if host != "127.0.0.1" && host != "localhost" {
return false
}
} else {
// The peer is not a candidate for sync if it's not a full
// node.
nodeServices := peer.Services()
if nodeServices&wire.SFNodeNetwork != wire.SFNodeNetwork {
return false
}
}
// Candidate if all checks passed.
return true
}
// handleNewPeerMsg deals with new peers that have signalled they may
// be considered as a sync peer (they have already successfully negotiated). It
// also starts syncing if needed. It is invoked from the syncHandler goroutine.
func (sm *SyncManager) handleNewPeerMsg(peer *peerpkg.Peer) {
// Ignore if in the process of shutting down.
if atomic.LoadInt32(&sm.shutdown) != 0 {
return
}
log.Infof("New valid peer %s (%s)", peer, peer.UserAgent())
// Initialize the peer state
isSyncCandidate := sm.isSyncCandidate(peer)
requestQueues := make(map[wire.InvType]*requestQueueAndSet)
requestQueueInvTypes := []wire.InvType{wire.InvTypeTx, wire.InvTypeBlock, wire.InvTypeSyncBlock}
for _, invType := range requestQueueInvTypes {
requestQueues[invType] = &requestQueueAndSet{
set: make(map[daghash.Hash]struct{}),
}
}
sm.peerStates[peer] = &peerSyncState{
syncCandidate: isSyncCandidate,
requestedTxns: make(map[daghash.TxID]struct{}),
requestedBlocks: make(map[daghash.Hash]struct{}),
requestQueues: requestQueues,
}
// Start syncing by choosing the best candidate if needed.
if isSyncCandidate && sm.syncPeer == nil {
sm.startSync()
}
}
// handleDonePeerMsg deals with peers that have signalled they are done. It
// removes the peer as a candidate for syncing and in the case where it was
// the current sync peer, attempts to select a new best peer to sync from. It
// is invoked from the syncHandler goroutine.
func (sm *SyncManager) handleDonePeerMsg(peer *peerpkg.Peer) {
state, exists := sm.peerStates[peer]
if !exists {
log.Warnf("Received done peer message for unknown peer %s", peer)
return
}
// Remove the peer from the list of candidate peers.
delete(sm.peerStates, peer)
log.Infof("Lost peer %s", peer)
// Remove requested transactions from the global map so that they will
// be fetched from elsewhere next time we get an inv.
for txHash := range state.requestedTxns {
delete(sm.requestedTxns, txHash)
}
// Remove requested blocks from the global map so that they will be
// fetched from elsewhere next time we get an inv.
// TODO: we could possibly here check which peers have these blocks
// and request them now to speed things up a little.
for blockHash := range state.requestedBlocks {
delete(sm.requestedBlocks, blockHash)
}
sm.stopSyncFromPeer(peer)
}
func (sm *SyncManager) stopSyncFromPeer(peer *peerpkg.Peer) {
// Attempt to find a new peer to sync from if the quitting peer is the
// sync peer.
if sm.syncPeer == peer {
sm.syncPeer = nil
sm.startSync()
}
}
func (sm *SyncManager) handleRemoveFromSyncCandidatesMsg(peer *peerpkg.Peer) {
sm.peerStates[peer].syncCandidate = false
sm.stopSyncFromPeer(peer)
}
// handleTxMsg handles transaction messages from all peers.
func (sm *SyncManager) handleTxMsg(tmsg *txMsg) {
peer := tmsg.peer
state, exists := sm.peerStates[peer]
if !exists {
log.Warnf("Received tx message from unknown peer %s", peer)
return
}
// If we didn't ask for this transaction then the peer is misbehaving.
txID := tmsg.tx.ID()
if _, exists = state.requestedTxns[*txID]; !exists {
log.Warnf("Got unrequested transaction %s from %s -- "+
"disconnecting", txID, peer.Addr())
peer.Disconnect()
return
}
// Ignore transactions that we have already rejected. Do not
// send a reject message here because if the transaction was already
// rejected, the transaction was unsolicited.
if _, exists = sm.rejectedTxns[*txID]; exists {
log.Debugf("Ignoring unsolicited previously rejected "+
"transaction %s from %s", txID, peer)
return
}
// Process the transaction to include validation, insertion in the
// memory pool, orphan handling, etc.
acceptedTxs, err := sm.txMemPool.ProcessTransaction(tmsg.tx,
true, mempool.Tag(peer.ID()))
// Remove transaction from request maps. Either the mempool/DAG
// already knows about it and as such we shouldn't have any more
// instances of trying to fetch it, or we failed to insert and thus
// we'll retry next time we get an inv.
delete(state.requestedTxns, *txID)
delete(sm.requestedTxns, *txID)
if err != nil {
// Do not request this transaction again until a new block
// has been processed.
sm.rejectedTxns[*txID] = struct{}{}
sm.limitTxIDMap(sm.rejectedTxns, maxRejectedTxns)
// When the error is a rule error, it means the transaction was
// simply rejected as opposed to something actually going wrong,
// so log it as such. Otherwise, something really did go wrong,
// so log it as an actual error.
if errors.As(err, &mempool.RuleError{}) {
log.Debugf("Rejected transaction %s from %s: %s",
txID, peer, err)
} else {
log.Errorf("Failed to process transaction %s: %s",
txID, err)
}
// Convert the error into an appropriate reject message and
// send it.
code, reason := mempool.ErrToRejectErr(err)
peer.PushRejectMsg(wire.CmdTx, code, reason, (*daghash.Hash)(txID), false)
return
}
sm.peerNotifier.AnnounceNewTransactions(acceptedTxs)
}
// current returns true if we believe we are synced with our peers, false if we
// still have blocks to check
//
// We consider ourselves current iff both of the following are true:
// 1. there's no syncPeer, a.k.a. all connected peers are at the same tip
// 2. the DAG considers itself current - to prevent attacks where a peer sends an
// unknown tip but never lets us sync to it.
func (sm *SyncManager) current() bool {
return sm.syncPeer == nil && sm.dag.IsCurrent()
}
// restartSyncIfNeeded finds a new sync candidate if we're not expecting any
// blocks from the current one.
func (sm *SyncManager) restartSyncIfNeeded() {
if sm.syncPeer != nil {
syncPeerState, exists := sm.peerStates[sm.syncPeer]
if exists {
isWaitingForBlocks := func() bool {
syncPeerState.requestQueueMtx.Lock()
defer syncPeerState.requestQueueMtx.Unlock()
return len(syncPeerState.requestedBlocks) != 0 || len(syncPeerState.requestQueues[wire.InvTypeSyncBlock].queue) != 0
}()
if isWaitingForBlocks {
return
}
}
}
sm.syncPeer = nil
sm.startSync()
}
// handleBlockMsg handles block messages from all peers.
func (sm *SyncManager) handleBlockMsg(bmsg *blockMsg) {
peer := bmsg.peer
state, exists := sm.peerStates[peer]
if !exists {
log.Warnf("Received block message from unknown peer %s", peer)
return
}
// If we didn't ask for this block then the peer is misbehaving.
blockHash := bmsg.block.Hash()
if _, exists = state.requestedBlocks[*blockHash]; !exists {
// The regression test intentionally sends some blocks twice
// to test duplicate block insertion fails. Don't disconnect
// the peer or ignore the block when we're in regression test
// mode in this case so the DAG code is actually fed the
// duplicate blocks.
if sm.dagParams != &dagconfig.RegressionNetParams {
log.Warnf("Got unrequested block %s from %s -- "+
"disconnecting", blockHash, peer.Addr())
peer.Disconnect()
return
}
}
behaviorFlags := blockdag.BFNone
if bmsg.isDelayedBlock {
behaviorFlags |= blockdag.BFAfterDelay
}
if bmsg.peer == sm.syncPeer {
behaviorFlags |= blockdag.BFIsSync
}
// Process the block to include validation, orphan handling, etc.
isOrphan, isDelayed, err := sm.dag.ProcessBlock(bmsg.block, behaviorFlags)
// Remove block from request maps. Either DAG knows about it and
// so we shouldn't have any more instances of trying to fetch it, or
// the insertion fails and thus we'll retry next time we get an inv.
delete(state.requestedBlocks, *blockHash)
delete(sm.requestedBlocks, *blockHash)
sm.restartSyncIfNeeded()
if err != nil {
// When the error is a rule error, it means the block was simply
// rejected as opposed to something actually going wrong, so log
// it as such. Otherwise, something really did go wrong, so log
// it as an actual error.
if errors.As(err, &blockdag.RuleError{}) {
log.Infof("Rejected block %s from %s: %s", blockHash,
peer, err)
} else {
log.Errorf("Failed to process block %s: %s",
blockHash, err)
}
var dbErr database.Error
if ok := errors.As(err, &dbErr); ok && dbErr.ErrorCode ==
database.ErrCorruption {
panic(dbErr)
}
// Convert the error into an appropriate reject message and
// send it.
code, reason := mempool.ErrToRejectErr(err)
peer.PushRejectMsg(wire.CmdBlock, code, reason, blockHash, false)
// Disconnect from the misbehaving peer.
peer.Disconnect()
return
}
if isDelayed {
return
}
// Request the parents for the orphan block from the peer that sent it.
if isOrphan {
missingAncestors, err := sm.dag.GetOrphanMissingAncestorHashes(blockHash)
if err != nil {
log.Errorf("Failed to find missing ancestors for block %s: %s",
blockHash, err)
return
}
sm.addBlocksToRequestQueue(state, missingAncestors, false)
} else {
// When the block is not an orphan, log information about it and
// update the DAG state.
blockBlueScore, err := sm.dag.BlueScoreByBlockHash(blockHash)
if err != nil {
log.Errorf("Failed to get blue score for block %s: %s", blockHash, err)
}
sm.progressLogger.LogBlockBlueScore(bmsg.block, blockBlueScore)
// Clear the rejected transactions.
sm.rejectedTxns = make(map[daghash.TxID]struct{})
}
// We don't want to flood our sync peer with getdata messages, so
// instead of asking it immediately about missing ancestors, we first
// wait until it finishes to send us all of the requested blocks.
if (isOrphan && peer != sm.syncPeer) || (peer == sm.syncPeer && len(state.requestedBlocks) == 0) {
err := sm.sendInvsFromRequestQueue(peer, state)
if err != nil {
log.Errorf("Failed to send invs from queue: %s", err)
return
}
}
}
func (sm *SyncManager) addBlocksToRequestQueue(state *peerSyncState, hashes []*daghash.Hash, isRelayedInv bool) {
state.requestQueueMtx.Lock()
defer state.requestQueueMtx.Unlock()
for _, hash := range hashes {
if _, exists := sm.requestedBlocks[*hash]; !exists {
invType := wire.InvTypeSyncBlock
if isRelayedInv {
invType = wire.InvTypeBlock
}
iv := wire.NewInvVect(invType, hash)
state.addInvToRequestQueueNoLock(iv)
}
}
}
func (state *peerSyncState) addInvToRequestQueueNoLock(iv *wire.InvVect) {
requestQueue, ok := state.requestQueues[iv.Type]
if !ok {
panic(errors.Errorf("got unsupported inventory type %s", iv.Type))
}
if _, exists := requestQueue.set[*iv.Hash]; !exists {
requestQueue.set[*iv.Hash] = struct{}{}
requestQueue.queue = append(requestQueue.queue, iv)
}
}
func (state *peerSyncState) addInvToRequestQueue(iv *wire.InvVect) {
state.requestQueueMtx.Lock()
defer state.requestQueueMtx.Unlock()
state.addInvToRequestQueueNoLock(iv)
}
// haveInventory returns whether or not the inventory represented by the passed
// inventory vector is known. This includes checking all of the various places
// inventory can be when it is in different states such as blocks that are part
// of the DAG, in the orphan pool, and transactions that are in the memory pool
// (either the main pool or orphan pool).
func (sm *SyncManager) haveInventory(invVect *wire.InvVect) (bool, error) {
switch invVect.Type {
case wire.InvTypeSyncBlock:
fallthrough
case wire.InvTypeBlock:
// Ask DAG if the block is known to it in any form (in DAG or as an orphan).
return sm.dag.IsKnownBlock(invVect.Hash), nil
case wire.InvTypeTx:
// Ask the transaction memory pool if the transaction is known
// to it in any form (main pool or orphan).
if sm.txMemPool.HaveTransaction((*daghash.TxID)(invVect.Hash)) {
return true, nil
}
// Check if the transaction exists from the point of view of the
// DAG's virtual block. Note that this is only a best effort
// since it is expensive to check existence of every output and
// the only purpose of this check is to avoid downloading
// already known transactions. Only the first two outputs are
// checked because the vast majority of transactions consist of
// two outputs where one is some form of "pay-to-somebody-else"
// and the other is a change output.
prevOut := wire.Outpoint{TxID: daghash.TxID(*invVect.Hash)}
for i := uint32(0); i < 2; i++ {
prevOut.Index = i
entry, ok := sm.dag.GetUTXOEntry(prevOut)
if !ok {
return false, nil
}
if entry != nil {
return true, nil
}
}
return false, nil
}
// The requested inventory is is an unsupported type, so just claim
// it is known to avoid requesting it.
return true, nil
}
// handleInvMsg handles inv messages from all peers.
// We examine the inventory advertised by the remote peer and act accordingly.
func (sm *SyncManager) handleInvMsg(imsg *invMsg) {
peer := imsg.peer
state, exists := sm.peerStates[peer]
if !exists {
log.Warnf("Received inv message from unknown peer %s", peer)
return
}
// Attempt to find the final block in the inventory list. There may
// not be one.
lastBlock := -1
invVects := imsg.inv.InvList
for i := len(invVects) - 1; i >= 0; i-- {
if invVects[i].IsBlockOrSyncBlock() {
lastBlock = i
break
}
}
// Request the advertised inventory if we don't already have it. Also,
// request parent blocks of orphans if we receive one we already have.
// Finally, attempt to detect potential stalls due to big orphan DAGs
// we already have and request more blocks to prevent them.
for i, iv := range invVects {
// Ignore unsupported inventory types.
switch iv.Type {
case wire.InvTypeBlock:
case wire.InvTypeSyncBlock:
case wire.InvTypeTx:
default:
continue
}
// Add the inventory to the cache of known inventory
// for the peer.
peer.AddKnownInventory(iv)
// Request the inventory if we don't already have it.
haveInv, err := sm.haveInventory(iv)
if err != nil {
log.Warnf("Unexpected failure when checking for "+
"existing inventory during inv message "+
"processing: %s", err)
continue
}
if !haveInv {
if iv.Type == wire.InvTypeTx {
// Skip the transaction if it has already been rejected.
if _, exists := sm.rejectedTxns[daghash.TxID(*iv.Hash)]; exists {
continue
}
// Skip the transaction if it had previously been requested.
if _, exists := state.requestedTxns[daghash.TxID(*iv.Hash)]; exists {
continue
}
}
// Add it to the request queue.
state.addInvToRequestQueue(iv)
continue
}
if iv.IsBlockOrSyncBlock() {
// The block is an orphan block that we already have.
// When the existing orphan was processed, it requested
// the missing parent blocks. When this scenario
// happens, it means there were more blocks missing
// than are allowed into a single inventory message. As
// a result, once this peer requested the final
// advertised block, the remote peer noticed and is now
// resending the orphan block as an available block
// to signal there are more missing blocks that need to
// be requested.
if sm.dag.IsKnownOrphan(iv.Hash) {
missingAncestors, err := sm.dag.GetOrphanMissingAncestorHashes(iv.Hash)
if err != nil {
log.Errorf("Failed to find missing ancestors for block %s: %s",
iv.Hash, err)
return
}
sm.addBlocksToRequestQueue(state, missingAncestors, iv.Type != wire.InvTypeSyncBlock)
continue
}
// We already have the final block advertised by this
// inventory message, so force a request for more. This
// should only happen if our DAG and the peer's DAG have
// diverged long time ago.
if i == lastBlock && peer == sm.syncPeer {
// Request blocks after the first block's ancestor that exists
// in the selected path chain, one up to the
// final one the remote peer knows about.
peer.PushGetBlockLocatorMsg(iv.Hash, sm.dagParams.GenesisHash)
}
}
}
err := sm.sendInvsFromRequestQueue(peer, state)
if err != nil {
log.Errorf("Failed to send invs from queue: %s", err)
}
}
func (sm *SyncManager) addInvsToGetDataMessageFromQueue(gdmsg *wire.MsgGetData, state *peerSyncState, invType wire.InvType, maxInvsToAdd int) error {
requestQueue, ok := state.requestQueues[invType]
if !ok {
panic(errors.Errorf("got unsupported inventory type %s", invType))
}
queue := requestQueue.queue
var invsNum int
leftSpaceInGdmsg := wire.MaxInvPerGetDataMsg - len(gdmsg.InvList)
if len(queue) > leftSpaceInGdmsg {
invsNum = leftSpaceInGdmsg
} else {
invsNum = len(queue)
}
if invsNum > maxInvsToAdd {
invsNum = maxInvsToAdd
}
invsToAdd := make([]*wire.InvVect, 0, invsNum)
for len(queue) != 0 && len(invsToAdd) < invsNum {
var iv *wire.InvVect
iv, queue = queue[0], queue[1:]
exists, err := sm.haveInventory(iv)
if err != nil {
return err
}
if !exists {
invsToAdd = append(invsToAdd, iv)
}
}
addBlockInv := func(iv *wire.InvVect) {
// Request the block if there is not already a pending
// request.
if _, exists := sm.requestedBlocks[*iv.Hash]; !exists {
sm.requestedBlocks[*iv.Hash] = struct{}{}
sm.limitHashMap(sm.requestedBlocks, maxRequestedBlocks)
state.requestedBlocks[*iv.Hash] = struct{}{}
gdmsg.AddInvVect(iv)
}
}
for _, iv := range invsToAdd {
delete(requestQueue.set, *iv.Hash)
switch invType {
case wire.InvTypeSyncBlock:
addBlockInv(iv)
case wire.InvTypeBlock:
addBlockInv(iv)
case wire.InvTypeTx:
// Request the transaction if there is not already a
// pending request.
if _, exists := sm.requestedTxns[daghash.TxID(*iv.Hash)]; !exists {
sm.requestedTxns[daghash.TxID(*iv.Hash)] = struct{}{}
sm.limitTxIDMap(sm.requestedTxns, maxRequestedTxns)
state.requestedTxns[daghash.TxID(*iv.Hash)] = struct{}{}
gdmsg.AddInvVect(iv)
}
}
if len(queue) >= wire.MaxInvPerGetDataMsg {
break
}
}
requestQueue.queue = queue
return nil
}
func (sm *SyncManager) sendInvsFromRequestQueue(peer *peerpkg.Peer, state *peerSyncState) error {
state.requestQueueMtx.Lock()
defer state.requestQueueMtx.Unlock()
gdmsg := wire.NewMsgGetData()
err := sm.addInvsToGetDataMessageFromQueue(gdmsg, state, wire.InvTypeSyncBlock, wire.MaxSyncBlockInvPerGetDataMsg)
if err != nil {
return err
}
if sm.current() {
err := sm.addInvsToGetDataMessageFromQueue(gdmsg, state, wire.InvTypeBlock, wire.MaxInvPerGetDataMsg)
if err != nil {
return err
}
err = sm.addInvsToGetDataMessageFromQueue(gdmsg, state, wire.InvTypeTx, wire.MaxInvPerGetDataMsg)
if err != nil {
return err
}
}
if len(gdmsg.InvList) > 0 {
peer.QueueMessage(gdmsg, nil)
}
return nil
}
// limitTxIDMap is a helper function for maps that require a maximum limit by
// evicting a random transaction if adding a new value would cause it to
// overflow the maximum allowed.
func (sm *SyncManager) limitTxIDMap(m map[daghash.TxID]struct{}, limit int) {
if len(m)+1 > limit {
// Remove a random entry from the map. For most compilers, Go's
// range statement iterates starting at a random item although
// that is not 100% guaranteed by the spec. The iteration order
// is not important here because an adversary would have to be
// able to pull off preimage attacks on the hashing function in
// order to target eviction of specific entries anyways.
for txID := range m {
delete(m, txID)
return
}
}
}
// limitHashMap is a helper function for maps that require a maximum limit by
// evicting a random item if adding a new value would cause it to
// overflow the maximum allowed.
func (sm *SyncManager) limitHashMap(m map[daghash.Hash]struct{}, limit int) {
if len(m)+1 > limit {
// Remove a random entry from the map. For most compilers, Go's
// range statement iterates starting at a random item although
// that is not 100% guaranteed by the spec. The iteration order
// is not important here because an adversary would have to be
// able to pull off preimage attacks on the hashing function in
// order to target eviction of specific entries anyways.
for hash := range m {
delete(m, hash)
return
}
}
}
func (sm *SyncManager) handleProcessBlockMsg(msg processBlockMsg) (isOrphan bool, err error) {
isOrphan, isDelayed, err := sm.dag.ProcessBlock(
msg.block, msg.flags|blockdag.BFDisallowDelay)
if err != nil {
return false, err
}
if isDelayed {
return false, errors.New("Cannot process blocks from RPC beyond the allowed time offset")
}
return isOrphan, nil
}
func (sm *SyncManager) handleSelectedTipMsg(msg *selectedTipMsg) {
peer := msg.peer
selectedTipHash := msg.selectedTipHash
state := sm.peerStates[peer]
if !state.isPendingForSelectedTip {
log.Warnf("Got unrequested selected tip message from %s -- "+
"disconnecting", peer.Addr())
peer.Disconnect()
}
state.isPendingForSelectedTip = false
if selectedTipHash.IsEqual(peer.SelectedTipHash()) {
return
}
peer.SetSelectedTipHash(selectedTipHash)
sm.startSync()
}
// messageHandler is the main handler for the sync manager. It must be run as a
// goroutine. It processes block and inv messages in a separate goroutine
// from the peer handlers so the block (MsgBlock) messages are handled by a
// single thread without needing to lock memory data structures. This is
// important because the sync manager controls which blocks are needed and how
// the fetching should proceed.
func (sm *SyncManager) messageHandler() {
out:
for {
select {
case m := <-sm.msgChan:
switch msg := m.(type) {
case *newPeerMsg:
sm.handleNewPeerMsg(msg.peer)
case *txMsg:
sm.handleTxMsg(msg)
msg.reply <- struct{}{}
case *blockMsg:
sm.handleBlockMsg(msg)
msg.reply <- struct{}{}
case *invMsg:
sm.handleInvMsg(msg)
case *donePeerMsg:
sm.handleDonePeerMsg(msg.peer)
case *removeFromSyncCandidatesMsg:
sm.handleRemoveFromSyncCandidatesMsg(msg.peer)
case getSyncPeerMsg:
var peerID int32
if sm.syncPeer != nil {
peerID = sm.syncPeer.ID()
}
msg.reply <- peerID
case processBlockMsg:
isOrphan, err := sm.handleProcessBlockMsg(msg)
msg.reply <- processBlockResponse{
isOrphan: isOrphan,
err: err,
}
case isCurrentMsg:
msg.reply <- sm.current()
case pauseMsg:
// Wait until the sender unpauses the manager.
<-msg.unpause
case *selectedTipMsg:
sm.handleSelectedTipMsg(msg)
msg.reply <- struct{}{}
default:
log.Warnf("Invalid message type in block "+
"handler: %T", msg)
}
case <-sm.quit:
break out
}
}
sm.wg.Done()
log.Trace("Block handler done")
}
// handleBlockDAGNotification handles notifications from blockDAG. It does
// things such as request orphan block parents and relay accepted blocks to
// connected peers.
func (sm *SyncManager) handleBlockDAGNotification(notification *blockdag.Notification) {
switch notification.Type {
// A block has been accepted into the blockDAG. Relay it to other peers.
case blockdag.NTBlockAdded:
data, ok := notification.Data.(*blockdag.BlockAddedNotificationData)
if !ok {
log.Warnf("Block Added notification data is of wrong type.")
break
}
block := data.Block
// Update mempool
ch := make(chan mempool.NewBlockMsg)
spawn(func() {
err := sm.txMemPool.HandleNewBlock(block, ch)
close(ch)
if err != nil {
panic(fmt.Sprintf("HandleNewBlock failed to handle block %s", block.Hash()))
}
})
// Relay if we are current and the block was not just now unorphaned.
// Otherwise peers that are current should already know about it
if sm.current() && !data.WasUnorphaned {
iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash())
sm.peerNotifier.RelayInventory(iv, block.MsgBlock().Header)
}
for msg := range ch {
sm.peerNotifier.TransactionConfirmed(msg.Tx)
sm.peerNotifier.AnnounceNewTransactions(msg.AcceptedTxs)
}
}
}
// NewPeer informs the sync manager of a newly active peer.
func (sm *SyncManager) NewPeer(peer *peerpkg.Peer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&sm.shutdown) != 0 {
return
}
sm.msgChan <- &newPeerMsg{peer: peer}
}
// QueueTx adds the passed transaction message and peer to the block handling
// queue. Responds to the done channel argument after the tx message is
// processed.
func (sm *SyncManager) QueueTx(tx *util.Tx, peer *peerpkg.Peer, done chan struct{}) {
// Don't accept more transactions if we're shutting down.
if atomic.LoadInt32(&sm.shutdown) != 0 {
done <- struct{}{}
return
}
sm.msgChan <- &txMsg{tx: tx, peer: peer, reply: done}
}
// QueueBlock adds the passed block message and peer to the block handling
// queue. Responds to the done channel argument after the block message is
// processed.
func (sm *SyncManager) QueueBlock(block *util.Block, peer *peerpkg.Peer, isDelayedBlock bool, done chan struct{}) {
// Don't accept more blocks if we're shutting down.
if atomic.LoadInt32(&sm.shutdown) != 0 {
done <- struct{}{}
return
}
sm.msgChan <- &blockMsg{block: block, peer: peer, isDelayedBlock: isDelayedBlock, reply: done}
}
// QueueInv adds the passed inv message and peer to the block handling queue.
func (sm *SyncManager) QueueInv(inv *wire.MsgInv, peer *peerpkg.Peer) {
// No channel handling here because peers do not need to block on inv
// messages.
if atomic.LoadInt32(&sm.shutdown) != 0 {
return
}
sm.msgChan <- &invMsg{inv: inv, peer: peer}
}
// QueueSelectedTipMsg adds the passed selected tip message and peer to the
// block handling queue. Responds to the done channel argument after it finished
// handling the message.
func (sm *SyncManager) QueueSelectedTipMsg(msg *wire.MsgSelectedTip, peer *peerpkg.Peer, done chan struct{}) {
sm.msgChan <- &selectedTipMsg{
selectedTipHash: msg.SelectedTipHash,
peer: peer,
reply: done,
}
}
// DonePeer informs the blockmanager that a peer has disconnected.
func (sm *SyncManager) DonePeer(peer *peerpkg.Peer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&sm.shutdown) != 0 {
return
}
sm.msgChan <- &donePeerMsg{peer: peer}
}
// RemoveFromSyncCandidates tells the blockmanager to remove a peer as
// a sync candidate.
func (sm *SyncManager) RemoveFromSyncCandidates(peer *peerpkg.Peer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&sm.shutdown) != 0 {
return
}
sm.msgChan <- &removeFromSyncCandidatesMsg{peer: peer}
}
// Start begins the core block handler which processes block and inv messages.
func (sm *SyncManager) Start() {
// Already started?
if atomic.AddInt32(&sm.started, 1) != 1 {
return
}
log.Trace("Starting sync manager")
sm.wg.Add(1)
spawn(sm.messageHandler)
}
// Stop gracefully shuts down the sync manager by stopping all asynchronous
// handlers and waiting for them to finish.
func (sm *SyncManager) Stop() error {
if atomic.AddInt32(&sm.shutdown, 1) != 1 {
log.Warnf("Sync manager is already in the process of " +
"shutting down")
return nil
}
log.Infof("Sync manager shutting down")
close(sm.quit)
sm.wg.Wait()
return nil
}
// SyncPeerID returns the ID of the current sync peer, or 0 if there is none.
func (sm *SyncManager) SyncPeerID() int32 {
reply := make(chan int32)
sm.msgChan <- getSyncPeerMsg{reply: reply}
return <-reply
}
// ProcessBlock makes use of ProcessBlock on an internal instance of a blockDAG.
func (sm *SyncManager) ProcessBlock(block *util.Block, flags blockdag.BehaviorFlags) (bool, error) {
reply := make(chan processBlockResponse)
sm.msgChan <- processBlockMsg{block: block, flags: flags, reply: reply}
response := <-reply
return response.isOrphan, response.err
}
// IsCurrent returns whether or not the sync manager believes it is synced with
// the connected peers.
func (sm *SyncManager) IsCurrent() bool {
reply := make(chan bool)
sm.msgChan <- isCurrentMsg{reply: reply}
return <-reply
}
// Pause pauses the sync manager until the returned channel is closed.
//
// Note that while paused, all peer and block processing is halted. The
// message sender should avoid pausing the sync manager for long durations.
func (sm *SyncManager) Pause() chan<- struct{} {
c := make(chan struct{})
sm.msgChan <- pauseMsg{c}
return c
}
// New constructs a new SyncManager. Use Start to begin processing asynchronous
// block, tx, and inv updates.
func New(config *Config) (*SyncManager, error) {
sm := SyncManager{
peerNotifier: config.PeerNotifier,
dag: config.DAG,
txMemPool: config.TxMemPool,
dagParams: config.DAGParams,
rejectedTxns: make(map[daghash.TxID]struct{}),
requestedTxns: make(map[daghash.TxID]struct{}),
requestedBlocks: make(map[daghash.Hash]struct{}),
peerStates: make(map[*peerpkg.Peer]*peerSyncState),
progressLogger: newBlockProgressLogger("Processed", log),
msgChan: make(chan interface{}, config.MaxPeers*3),
quit: make(chan struct{}),
}
sm.dag.Subscribe(sm.handleBlockDAGNotification)
return &sm, nil
}