kaspad/blockdag/dag.go
Svarog 0ca127853d
[NOD-974] UTXO-Commitments shouldn't include the new block's transactions (#727)
* [NOD-975] Don't include block transactions inside its UTXO commitment (#711)

* [NOD-975] Don't include block transactions inside its UTXO commitment.

* Revert "[NOD-975] Don't include block transactions inside its UTXO commitment."

This reverts commit b1a2ae66

* [NOD-975] Implement a (currently failing) TestUTXOCommitment.

* [NOD-975] Remove the block's own transactions from calcMultiset.

* [NOD-975] Simplify calcMultiset.

* [NOD-975] Add a comment on top of selectedParentMultiset.

* [NOD-975] Use pastUTXO instead of selectedParentUTXO in calcMultiset.

* [NOD-975] Use selected parent's pastUTXO instead of this block's pastUTXO in calcMultiset.

* [NOD-975] Extract selectedParentPastUTXO to a separate function.

* [NOD-975] Remove selectedParentUTXO from pastUTXO's return values.

* [NOD-975] Add txs to TestUTXOCommitment.

* [NOD-975] Remove debug code.

* [NOD-975] In pastUTXOMultiSet, copy the multiset to avoid modifying the original.

* [NOD-975] Add a test: TestPastUTXOMultiSet.

* [NOD-975] Improve TestPastUTXOMultiSet.

* [NOD-976] Implement tests for UTXO commitments (#715)

* [NOD-975] Don't include block transactions inside its UTXO commitment.

* Revert "[NOD-975] Don't include block transactions inside its UTXO commitment."

This reverts commit b1a2ae66

* [NOD-975] Implement a (currently failing) TestUTXOCommitment.

* [NOD-975] Remove the block's own transactions from calcMultiset.

* [NOD-975] Simplify calcMultiset.

* [NOD-975] Add a comment on top of selectedParentMultiset.

* [NOD-975] Use pastUTXO instead of selectedParentUTXO in calcMultiset.

* [NOD-975] Use selected parent's pastUTXO instead of this block's pastUTXO in calcMultiset.

* [NOD-975] Extract selectedParentPastUTXO to a separate function.

* [NOD-975] Remove selectedParentUTXO from pastUTXO's return values.

* [NOD-975] Add txs to TestUTXOCommitment.

* [NOD-976] Generate new blockDB blocks for tests.

* [NOD-976] Fix TestBlueBlockWindow.

* [NOD-976] Fix TestIsKnownBlock.

* [NOD-976] Fix TestGHOSTDAG.

* [NOD-976] Fix TestUTXOCommitment.

* [NOD-976] Remove kaka.

* [NOD-990] Save utxo diffs of past UTXO (#724)

* [NOD-990] Save UTXO diffs of past UTXO

* [NOD-990] Check for block double spends with its past instead of building its UTXO

* [NOD-990] Call resetExtraNonceForTest in TestUTXOCommitment

* [NOD-990] Remove redundant functions diffFromTx and diffFromAcceptedTx

* [NOD-990] Rename i->j to avoid confusion

* [NOD-990] Break long lines

* [NOD-990] Rename ErrDoubleSpendsWithBlockTransaction -> ErrDoubleSpendInSameBlock

* [NOD-990] Make ErrDoubleSpendInSameBlock more detailed

* [NOD-990] Add testProcessBlockRuleError

* [NOD-990] Fix comment

* [NOD-990] Add test for duplicate transactions on the same block

* [NOD-990] Use pkg/errors on panic

* [NOD-990] Make cloneWithoutBase method

* [NOD-990] Break long lines

* [NOD-990] Fix comment

* [NOD-990] Fix wrong variable names

* [NOD-990] Fix comment

* [NOD-974] Generate new test blocks.

* [NOD-974] Fix TestIsKnownBlock and TestGHOSTDAG.

* [NOD-974] Fix TestUTXOCommitment.

* [NOD-974] Fix comments

Co-authored-by: stasatdaglabs <39559713+stasatdaglabs@users.noreply.github.com>
Co-authored-by: stasatdaglabs <stas@daglabs.com>
Co-authored-by: Ori Newman <orinewman1@gmail.com>
2020-05-20 12:43:52 +03:00

2104 lines
69 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockdag
import (
"fmt"
"math"
"sort"
"sync"
"time"
"github.com/kaspanet/kaspad/dbaccess"
"github.com/pkg/errors"
"github.com/kaspanet/kaspad/util/subnetworkid"
"github.com/kaspanet/go-secp256k1"
"github.com/kaspanet/kaspad/dagconfig"
"github.com/kaspanet/kaspad/txscript"
"github.com/kaspanet/kaspad/util"
"github.com/kaspanet/kaspad/util/daghash"
"github.com/kaspanet/kaspad/wire"
)
const (
// maxOrphanBlocks is the maximum number of orphan blocks that can be
// queued.
maxOrphanBlocks = 100
isDAGCurrentMaxDiff = 12 * time.Hour
)
// orphanBlock represents a block that we don't yet have the parent for. It
// is a normal block plus an expiration time to prevent caching the orphan
// forever.
type orphanBlock struct {
block *util.Block
expiration time.Time
}
// delayedBlock represents a block which has a delayed timestamp and will be processed at processTime
type delayedBlock struct {
block *util.Block
processTime time.Time
}
// chainUpdates represents the updates made to the selected parent chain after
// a block had been added to the DAG.
type chainUpdates struct {
removedChainBlockHashes []*daghash.Hash
addedChainBlockHashes []*daghash.Hash
}
// BlockDAG provides functions for working with the kaspa block DAG.
// It includes functionality such as rejecting duplicate blocks, ensuring blocks
// follow all rules, and orphan handling.
type BlockDAG struct {
// The following fields are set when the instance is created and can't
// be changed afterwards, so there is no need to protect them with a
// separate mutex.
dagParams *dagconfig.Params
timeSource TimeSource
sigCache *txscript.SigCache
indexManager IndexManager
genesis *blockNode
// The following fields are calculated based upon the provided DAG
// parameters. They are also set when the instance is created and
// can't be changed afterwards, so there is no need to protect them with
// a separate mutex.
targetTimePerBlock int64 // The target delay between blocks (in seconds)
difficultyAdjustmentWindowSize uint64
TimestampDeviationTolerance uint64
// powMaxBits defines the highest allowed proof of work value for a
// block in compact form.
powMaxBits uint32
// dagLock protects concurrent access to the vast majority of the
// fields in this struct below this point.
dagLock sync.RWMutex
utxoLock sync.RWMutex
// index and virtual are related to the memory block index. They both
// have their own locks, however they are often also protected by the
// DAG lock to help prevent logic races when blocks are being processed.
// index houses the entire block index in memory. The block index is
// a tree-shaped structure.
index *blockIndex
// blockCount holds the number of blocks in the DAG
blockCount uint64
// virtual tracks the current tips.
virtual *virtualBlock
// subnetworkID holds the subnetwork ID of the DAG
subnetworkID *subnetworkid.SubnetworkID
// These fields are related to handling of orphan blocks. They are
// protected by a combination of the DAG lock and the orphan lock.
orphanLock sync.RWMutex
orphans map[daghash.Hash]*orphanBlock
prevOrphans map[daghash.Hash][]*orphanBlock
newestOrphan *orphanBlock
// delayedBlocks is a list of all delayed blocks. We are maintaining this
// list for the case where a new block with a valid timestamp points to a delayed block.
// In that case we will delay the processing of the child block so it would be processed
// after its parent.
delayedBlocks map[daghash.Hash]*delayedBlock
delayedBlocksQueue delayedBlocksHeap
// The following caches are used to efficiently keep track of the
// current deployment threshold state of each rule change deployment.
//
// This information is stored in the database so it can be quickly
// reconstructed on load.
//
// warningCaches caches the current deployment threshold state for blocks
// in each of the **possible** deployments. This is used in order to
// detect when new unrecognized rule changes are being voted on and/or
// have been activated such as will be the case when older versions of
// the software are being used
//
// deploymentCaches caches the current deployment threshold state for
// blocks in each of the actively defined deployments.
warningCaches []thresholdStateCache
deploymentCaches []thresholdStateCache
// The following fields are used to determine if certain warnings have
// already been shown.
//
// unknownRulesWarned refers to warnings due to unknown rules being
// activated.
//
// unknownVersionsWarned refers to warnings due to unknown versions
// being mined.
unknownRulesWarned bool
unknownVersionsWarned bool
// The notifications field stores a slice of callbacks to be executed on
// certain blockDAG events.
notificationsLock sync.RWMutex
notifications []NotificationCallback
lastFinalityPoint *blockNode
utxoDiffStore *utxoDiffStore
reachabilityStore *reachabilityStore
multisetStore *multisetStore
recentBlockProcessingTimestamps []time.Time
startTime time.Time
}
// IsKnownBlock returns whether or not the DAG instance has the block represented
// by the passed hash. This includes checking the various places a block can
// be in, like part of the DAG or the orphan pool.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsKnownBlock(hash *daghash.Hash) bool {
return dag.IsInDAG(hash) || dag.IsKnownOrphan(hash) || dag.isKnownDelayedBlock(hash)
}
// AreKnownBlocks returns whether or not the DAG instances has all blocks represented
// by the passed hashes. This includes checking the various places a block can
// be in, like part of the DAG or the orphan pool.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) AreKnownBlocks(hashes []*daghash.Hash) bool {
for _, hash := range hashes {
haveBlock := dag.IsKnownBlock(hash)
if !haveBlock {
return false
}
}
return true
}
// IsKnownOrphan returns whether the passed hash is currently a known orphan.
// Keep in mind that only a limited number of orphans are held onto for a
// limited amount of time, so this function must not be used as an absolute
// way to test if a block is an orphan block. A full block (as opposed to just
// its hash) must be passed to ProcessBlock for that purpose. However, calling
// ProcessBlock with an orphan that already exists results in an error, so this
// function provides a mechanism for a caller to intelligently detect *recent*
// duplicate orphans and react accordingly.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsKnownOrphan(hash *daghash.Hash) bool {
// Protect concurrent access. Using a read lock only so multiple
// readers can query without blocking each other.
dag.orphanLock.RLock()
defer dag.orphanLock.RUnlock()
_, exists := dag.orphans[*hash]
return exists
}
// IsKnownInvalid returns whether the passed hash is known to be an invalid block.
// Note that if the block is not found this method will return false.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsKnownInvalid(hash *daghash.Hash) bool {
node := dag.index.LookupNode(hash)
if node == nil {
return false
}
return dag.index.NodeStatus(node).KnownInvalid()
}
// GetOrphanMissingAncestorHashes returns all of the missing parents in the orphan's sub-DAG
//
// This function is safe for concurrent access.
func (dag *BlockDAG) GetOrphanMissingAncestorHashes(orphanHash *daghash.Hash) ([]*daghash.Hash, error) {
// Protect concurrent access. Using a read lock only so multiple
// readers can query without blocking each other.
dag.orphanLock.RLock()
defer dag.orphanLock.RUnlock()
missingAncestorsHashes := make([]*daghash.Hash, 0)
visited := make(map[daghash.Hash]bool)
queue := []*daghash.Hash{orphanHash}
for len(queue) > 0 {
var current *daghash.Hash
current, queue = queue[0], queue[1:]
if !visited[*current] {
visited[*current] = true
orphan, orphanExists := dag.orphans[*current]
if orphanExists {
queue = append(queue, orphan.block.MsgBlock().Header.ParentHashes...)
} else {
if !dag.IsInDAG(current) && current != orphanHash {
missingAncestorsHashes = append(missingAncestorsHashes, current)
}
}
}
}
return missingAncestorsHashes, nil
}
// removeOrphanBlock removes the passed orphan block from the orphan pool and
// previous orphan index.
func (dag *BlockDAG) removeOrphanBlock(orphan *orphanBlock) {
// Protect concurrent access.
dag.orphanLock.Lock()
defer dag.orphanLock.Unlock()
// Remove the orphan block from the orphan pool.
orphanHash := orphan.block.Hash()
delete(dag.orphans, *orphanHash)
// Remove the reference from the previous orphan index too.
for _, parentHash := range orphan.block.MsgBlock().Header.ParentHashes {
// An indexing for loop is intentionally used over a range here as range
// does not reevaluate the slice on each iteration nor does it adjust the
// index for the modified slice.
orphans := dag.prevOrphans[*parentHash]
for i := 0; i < len(orphans); i++ {
hash := orphans[i].block.Hash()
if hash.IsEqual(orphanHash) {
orphans = append(orphans[:i], orphans[i+1:]...)
i--
}
}
// Remove the map entry altogether if there are no longer any orphans
// which depend on the parent hash.
if len(orphans) == 0 {
delete(dag.prevOrphans, *parentHash)
continue
}
dag.prevOrphans[*parentHash] = orphans
}
}
// addOrphanBlock adds the passed block (which is already determined to be
// an orphan prior calling this function) to the orphan pool. It lazily cleans
// up any expired blocks so a separate cleanup poller doesn't need to be run.
// It also imposes a maximum limit on the number of outstanding orphan
// blocks and will remove the oldest received orphan block if the limit is
// exceeded.
func (dag *BlockDAG) addOrphanBlock(block *util.Block) {
// Remove expired orphan blocks.
for _, oBlock := range dag.orphans {
if time.Now().After(oBlock.expiration) {
dag.removeOrphanBlock(oBlock)
continue
}
// Update the newest orphan block pointer so it can be discarded
// in case the orphan pool fills up.
if dag.newestOrphan == nil || oBlock.block.Timestamp().After(dag.newestOrphan.block.Timestamp()) {
dag.newestOrphan = oBlock
}
}
// Limit orphan blocks to prevent memory exhaustion.
if len(dag.orphans)+1 > maxOrphanBlocks {
// If the new orphan is newer than the newest orphan on the orphan
// pool, don't add it.
if block.Timestamp().After(dag.newestOrphan.block.Timestamp()) {
return
}
// Remove the newest orphan to make room for the added one.
dag.removeOrphanBlock(dag.newestOrphan)
dag.newestOrphan = nil
}
// Protect concurrent access. This is intentionally done here instead
// of near the top since removeOrphanBlock does its own locking and
// the range iterator is not invalidated by removing map entries.
dag.orphanLock.Lock()
defer dag.orphanLock.Unlock()
// Insert the block into the orphan map with an expiration time
// 1 hour from now.
expiration := time.Now().Add(time.Hour)
oBlock := &orphanBlock{
block: block,
expiration: expiration,
}
dag.orphans[*block.Hash()] = oBlock
// Add to parent hash lookup index for faster dependency lookups.
for _, parentHash := range block.MsgBlock().Header.ParentHashes {
dag.prevOrphans[*parentHash] = append(dag.prevOrphans[*parentHash], oBlock)
}
}
// SequenceLock represents the converted relative lock-time in seconds, and
// absolute block-blue-score for a transaction input's relative lock-times.
// According to SequenceLock, after the referenced input has been confirmed
// within a block, a transaction spending that input can be included into a
// block either after 'seconds' (according to past median time), or once the
// 'BlockBlueScore' has been reached.
type SequenceLock struct {
Seconds int64
BlockBlueScore int64
}
// CalcSequenceLock computes a relative lock-time SequenceLock for the passed
// transaction using the passed UTXOSet to obtain the past median time
// for blocks in which the referenced inputs of the transactions were included
// within. The generated SequenceLock lock can be used in conjunction with a
// block height, and adjusted median block time to determine if all the inputs
// referenced within a transaction have reached sufficient maturity allowing
// the candidate transaction to be included in a block.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) CalcSequenceLock(tx *util.Tx, utxoSet UTXOSet, mempool bool) (*SequenceLock, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.calcSequenceLock(dag.selectedTip(), utxoSet, tx, mempool)
}
// CalcSequenceLockNoLock is lock free version of CalcSequenceLockWithLock
// This function is unsafe for concurrent access.
func (dag *BlockDAG) CalcSequenceLockNoLock(tx *util.Tx, utxoSet UTXOSet, mempool bool) (*SequenceLock, error) {
return dag.calcSequenceLock(dag.selectedTip(), utxoSet, tx, mempool)
}
// calcSequenceLock computes the relative lock-times for the passed
// transaction. See the exported version, CalcSequenceLock for further details.
//
// This function MUST be called with the DAG state lock held (for writes).
func (dag *BlockDAG) calcSequenceLock(node *blockNode, utxoSet UTXOSet, tx *util.Tx, mempool bool) (*SequenceLock, error) {
// A value of -1 for each relative lock type represents a relative time
// lock value that will allow a transaction to be included in a block
// at any given height or time.
sequenceLock := &SequenceLock{Seconds: -1, BlockBlueScore: -1}
// Sequence locks don't apply to coinbase transactions Therefore, we
// return sequence lock values of -1 indicating that this transaction
// can be included within a block at any given height or time.
if tx.IsCoinBase() {
return sequenceLock, nil
}
mTx := tx.MsgTx()
for txInIndex, txIn := range mTx.TxIn {
entry, ok := utxoSet.Get(txIn.PreviousOutpoint)
if !ok {
str := fmt.Sprintf("output %s referenced from "+
"transaction %s input %d either does not exist or "+
"has already been spent", txIn.PreviousOutpoint,
tx.ID(), txInIndex)
return sequenceLock, ruleError(ErrMissingTxOut, str)
}
// If the input blue score is set to the mempool blue score, then we
// assume the transaction makes it into the next block when
// evaluating its sequence blocks.
inputBlueScore := entry.BlockBlueScore()
if entry.IsUnaccepted() {
inputBlueScore = dag.virtual.blueScore
}
// Given a sequence number, we apply the relative time lock
// mask in order to obtain the time lock delta required before
// this input can be spent.
sequenceNum := txIn.Sequence
relativeLock := int64(sequenceNum & wire.SequenceLockTimeMask)
switch {
// Relative time locks are disabled for this input, so we can
// skip any further calculation.
case sequenceNum&wire.SequenceLockTimeDisabled == wire.SequenceLockTimeDisabled:
continue
case sequenceNum&wire.SequenceLockTimeIsSeconds == wire.SequenceLockTimeIsSeconds:
// This input requires a relative time lock expressed
// in seconds before it can be spent. Therefore, we
// need to query for the block prior to the one in
// which this input was accepted within so we can
// compute the past median time for the block prior to
// the one which accepted this referenced output.
blockNode := node
for blockNode.selectedParent.blueScore > inputBlueScore {
blockNode = blockNode.selectedParent
}
medianTime := blockNode.PastMedianTime(dag)
// Time based relative time-locks as defined by BIP 68
// have a time granularity of RelativeLockSeconds, so
// we shift left by this amount to convert to the
// proper relative time-lock. We also subtract one from
// the relative lock to maintain the original lockTime
// semantics.
timeLockSeconds := (relativeLock << wire.SequenceLockTimeGranularity) - 1
timeLock := medianTime.Unix() + timeLockSeconds
if timeLock > sequenceLock.Seconds {
sequenceLock.Seconds = timeLock
}
default:
// The relative lock-time for this input is expressed
// in blocks so we calculate the relative offset from
// the input's blue score as its converted absolute
// lock-time. We subtract one from the relative lock in
// order to maintain the original lockTime semantics.
blockBlueScore := int64(inputBlueScore) + relativeLock - 1
if blockBlueScore > sequenceLock.BlockBlueScore {
sequenceLock.BlockBlueScore = blockBlueScore
}
}
}
return sequenceLock, nil
}
// LockTimeToSequence converts the passed relative locktime to a sequence
// number in accordance to BIP-68.
func LockTimeToSequence(isSeconds bool, locktime uint64) uint64 {
// If we're expressing the relative lock time in blocks, then the
// corresponding sequence number is simply the desired input age.
if !isSeconds {
return locktime
}
// Set the 22nd bit which indicates the lock time is in seconds, then
// shift the locktime over by 9 since the time granularity is in
// 512-second intervals (2^9). This results in a max lock-time of
// 33,553,920 seconds, or 1.1 years.
return wire.SequenceLockTimeIsSeconds |
locktime>>wire.SequenceLockTimeGranularity
}
// addBlock handles adding the passed block to the DAG.
//
// The flags modify the behavior of this function as follows:
// - BFFastAdd: Avoids several expensive transaction validation operations.
//
// This function MUST be called with the DAG state lock held (for writes).
func (dag *BlockDAG) addBlock(node *blockNode,
block *util.Block, selectedParentAnticone []*blockNode, flags BehaviorFlags) (*chainUpdates, error) {
// Skip checks if node has already been fully validated.
fastAdd := flags&BFFastAdd == BFFastAdd || dag.index.NodeStatus(node).KnownValid()
// Connect the block to the DAG.
chainUpdates, err := dag.connectBlock(node, block, selectedParentAnticone, fastAdd)
if err != nil {
if errors.As(err, &RuleError{}) {
dag.index.SetStatusFlags(node, statusValidateFailed)
dbTx, err := dbaccess.NewTx()
if err != nil {
return nil, err
}
defer dbTx.RollbackUnlessClosed()
err = dag.index.flushToDB(dbTx)
if err != nil {
return nil, err
}
err = dbTx.Commit()
if err != nil {
return nil, err
}
}
return nil, err
}
dag.blockCount++
return chainUpdates, nil
}
func calculateAcceptedIDMerkleRoot(multiBlockTxsAcceptanceData MultiBlockTxsAcceptanceData) *daghash.Hash {
var acceptedTxs []*util.Tx
for _, blockTxsAcceptanceData := range multiBlockTxsAcceptanceData {
for _, txAcceptance := range blockTxsAcceptanceData.TxAcceptanceData {
if !txAcceptance.IsAccepted {
continue
}
acceptedTxs = append(acceptedTxs, txAcceptance.Tx)
}
}
sort.Slice(acceptedTxs, func(i, j int) bool {
return daghash.LessTxID(acceptedTxs[i].ID(), acceptedTxs[j].ID())
})
acceptedIDMerkleTree := BuildIDMerkleTreeStore(acceptedTxs)
return acceptedIDMerkleTree.Root()
}
func (node *blockNode) validateAcceptedIDMerkleRoot(dag *BlockDAG, txsAcceptanceData MultiBlockTxsAcceptanceData) error {
if node.isGenesis() {
return nil
}
calculatedAccepetedIDMerkleRoot := calculateAcceptedIDMerkleRoot(txsAcceptanceData)
header := node.Header()
if !header.AcceptedIDMerkleRoot.IsEqual(calculatedAccepetedIDMerkleRoot) {
str := fmt.Sprintf("block accepted ID merkle root is invalid - block "+
"header indicates %s, but calculated value is %s",
header.AcceptedIDMerkleRoot, calculatedAccepetedIDMerkleRoot)
return ruleError(ErrBadMerkleRoot, str)
}
return nil
}
// connectBlock handles connecting the passed node/block to the DAG.
//
// This function MUST be called with the DAG state lock held (for writes).
func (dag *BlockDAG) connectBlock(node *blockNode,
block *util.Block, selectedParentAnticone []*blockNode, fastAdd bool) (*chainUpdates, error) {
// No warnings about unknown rules or versions until the DAG is
// current.
if dag.isCurrent() {
// Warn if any unknown new rules are either about to activate or
// have already been activated.
if err := dag.warnUnknownRuleActivations(node); err != nil {
return nil, err
}
// Warn if a high enough percentage of the last blocks have
// unexpected versions.
if err := dag.warnUnknownVersions(node); err != nil {
return nil, err
}
}
if err := dag.checkFinalityRules(node); err != nil {
return nil, err
}
if err := dag.validateGasLimit(block); err != nil {
return nil, err
}
newBlockPastUTXO, txsAcceptanceData, newBlockFeeData, newBlockMultiSet, err :=
node.verifyAndBuildUTXO(dag, block.Transactions(), fastAdd)
if err != nil {
var ruleErr RuleError
if ok := errors.As(err, &ruleErr); ok {
return nil, ruleError(ruleErr.ErrorCode, fmt.Sprintf("error verifying UTXO for %s: %s", node, err))
}
return nil, errors.Wrapf(err, "error verifying UTXO for %s", node)
}
err = node.validateCoinbaseTransaction(dag, block, txsAcceptanceData)
if err != nil {
return nil, err
}
// Apply all changes to the DAG.
virtualUTXODiff, chainUpdates, err :=
dag.applyDAGChanges(node, newBlockPastUTXO, newBlockMultiSet, selectedParentAnticone)
if err != nil {
// Since all validation logic has already ran, if applyDAGChanges errors out,
// this means we have a problem in the internal structure of the DAG - a problem which is
// irrecoverable, and it would be a bad idea to attempt adding any more blocks to the DAG.
// Therefore - in such cases we panic.
panic(err)
}
err = dag.saveChangesFromBlock(block, virtualUTXODiff, txsAcceptanceData, newBlockFeeData)
if err != nil {
return nil, err
}
return chainUpdates, nil
}
// calcMultiset returns the multiset of the past UTXO of the given block.
func (node *blockNode) calcMultiset(dag *BlockDAG, acceptanceData MultiBlockTxsAcceptanceData,
selectedParentPastUTXO UTXOSet) (*secp256k1.MultiSet, error) {
return node.pastUTXOMultiSet(dag, acceptanceData, selectedParentPastUTXO)
}
func (node *blockNode) pastUTXOMultiSet(dag *BlockDAG, acceptanceData MultiBlockTxsAcceptanceData,
selectedParentPastUTXO UTXOSet) (*secp256k1.MultiSet, error) {
ms, err := node.selectedParentMultiset(dag)
if err != nil {
return nil, err
}
for _, blockAcceptanceData := range acceptanceData {
for _, txAcceptanceData := range blockAcceptanceData.TxAcceptanceData {
if !txAcceptanceData.IsAccepted {
continue
}
tx := txAcceptanceData.Tx.MsgTx()
var err error
ms, err = addTxToMultiset(ms, tx, selectedParentPastUTXO, node.blueScore)
if err != nil {
return nil, err
}
}
}
return ms, nil
}
// selectedParentMultiset returns the multiset of the node's selected
// parent. If the node is the genesis blockNode then it does not have
// a selected parent, in which case return a new, empty multiset.
func (node *blockNode) selectedParentMultiset(dag *BlockDAG) (*secp256k1.MultiSet, error) {
if node.isGenesis() {
return secp256k1.NewMultiset(), nil
}
ms, err := dag.multisetStore.multisetByBlockNode(node.selectedParent)
if err != nil {
return nil, err
}
return ms, nil
}
func addTxToMultiset(ms *secp256k1.MultiSet, tx *wire.MsgTx, pastUTXO UTXOSet, blockBlueScore uint64) (*secp256k1.MultiSet, error) {
isCoinbase := tx.IsCoinBase()
if !isCoinbase {
for _, txIn := range tx.TxIn {
entry, ok := pastUTXO.Get(txIn.PreviousOutpoint)
if !ok {
return nil, errors.Errorf("Couldn't find entry for outpoint %s", txIn.PreviousOutpoint)
}
var err error
ms, err = removeUTXOFromMultiset(ms, entry, &txIn.PreviousOutpoint)
if err != nil {
return nil, err
}
}
}
for i, txOut := range tx.TxOut {
outpoint := *wire.NewOutpoint(tx.TxID(), uint32(i))
entry := NewUTXOEntry(txOut, isCoinbase, blockBlueScore)
var err error
ms, err = addUTXOToMultiset(ms, entry, &outpoint)
if err != nil {
return nil, err
}
}
return ms, nil
}
func (dag *BlockDAG) saveChangesFromBlock(block *util.Block, virtualUTXODiff *UTXODiff,
txsAcceptanceData MultiBlockTxsAcceptanceData, feeData compactFeeData) error {
dbTx, err := dbaccess.NewTx()
if err != nil {
return err
}
defer dbTx.RollbackUnlessClosed()
err = dag.index.flushToDB(dbTx)
if err != nil {
return err
}
err = dag.utxoDiffStore.flushToDB(dbTx)
if err != nil {
return err
}
err = dag.reachabilityStore.flushToDB(dbTx)
if err != nil {
return err
}
err = dag.multisetStore.flushToDB(dbTx)
if err != nil {
return err
}
// Update DAG state.
state := &dagState{
TipHashes: dag.TipHashes(),
LastFinalityPoint: dag.lastFinalityPoint.hash,
LocalSubnetworkID: dag.subnetworkID,
}
err = saveDAGState(dbTx, state)
if err != nil {
return err
}
// Update the UTXO set using the diffSet that was melded into the
// full UTXO set.
err = updateUTXOSet(dbTx, virtualUTXODiff)
if err != nil {
return err
}
// Scan all accepted transactions and register any subnetwork registry
// transaction. If any subnetwork registry transaction is not well-formed,
// fail the entire block.
err = registerSubnetworks(dbTx, block.Transactions())
if err != nil {
return err
}
// Allow the index manager to call each of the currently active
// optional indexes with the block being connected so they can
// update themselves accordingly.
if dag.indexManager != nil {
err := dag.indexManager.ConnectBlock(dbTx, block.Hash(), txsAcceptanceData)
if err != nil {
return err
}
}
// Apply the fee data into the database
err = dbaccess.StoreFeeData(dbTx, block.Hash(), feeData)
if err != nil {
return err
}
err = dbTx.Commit()
if err != nil {
return err
}
dag.index.clearDirtyEntries()
dag.utxoDiffStore.clearDirtyEntries()
dag.utxoDiffStore.clearOldEntries()
dag.reachabilityStore.clearDirtyEntries()
dag.multisetStore.clearNewEntries()
return nil
}
func (dag *BlockDAG) validateGasLimit(block *util.Block) error {
var currentSubnetworkID *subnetworkid.SubnetworkID
var currentSubnetworkGasLimit uint64
var currentGasUsage uint64
var err error
// We assume here that transactions are ordered by subnetworkID,
// since it was already validated in checkTransactionSanity
for _, tx := range block.Transactions() {
msgTx := tx.MsgTx()
// In native and Built-In subnetworks all txs must have Gas = 0, and that was already validated in checkTransactionSanity
// Therefore - no need to check them here.
if msgTx.SubnetworkID.IsEqual(subnetworkid.SubnetworkIDNative) || msgTx.SubnetworkID.IsBuiltIn() {
continue
}
if !msgTx.SubnetworkID.IsEqual(currentSubnetworkID) {
currentSubnetworkID = &msgTx.SubnetworkID
currentGasUsage = 0
currentSubnetworkGasLimit, err = GasLimit(currentSubnetworkID)
if err != nil {
return errors.Errorf("Error getting gas limit for subnetworkID '%s': %s", currentSubnetworkID, err)
}
}
newGasUsage := currentGasUsage + msgTx.Gas
if newGasUsage < currentGasUsage { // check for overflow
str := fmt.Sprintf("Block gas usage in subnetwork with ID %s has overflown", currentSubnetworkID)
return ruleError(ErrInvalidGas, str)
}
if newGasUsage > currentSubnetworkGasLimit {
str := fmt.Sprintf("Block wastes too much gas in subnetwork with ID %s", currentSubnetworkID)
return ruleError(ErrInvalidGas, str)
}
currentGasUsage = newGasUsage
}
return nil
}
// LastFinalityPointHash returns the hash of the last finality point
func (dag *BlockDAG) LastFinalityPointHash() *daghash.Hash {
if dag.lastFinalityPoint == nil {
return nil
}
return dag.lastFinalityPoint.hash
}
// checkFinalityRules checks the new block does not violate the finality rules
// specifically - the new block selectedParent chain should contain the old finality point
func (dag *BlockDAG) checkFinalityRules(newNode *blockNode) error {
// the genesis block can not violate finality rules
if newNode.isGenesis() {
return nil
}
for currentNode := newNode; currentNode != dag.lastFinalityPoint; currentNode = currentNode.selectedParent {
// If we went past dag's last finality point without encountering it -
// the new block has violated finality.
if currentNode.blueScore <= dag.lastFinalityPoint.blueScore {
return ruleError(ErrFinality, "The last finality point is not in the selected chain of this block")
}
}
return nil
}
// updateFinalityPoint updates the dag's last finality point if necessary.
func (dag *BlockDAG) updateFinalityPoint() {
selectedTip := dag.selectedTip()
// if the selected tip is the genesis block - it should be the new finality point
if selectedTip.isGenesis() {
dag.lastFinalityPoint = selectedTip
return
}
// We are looking for a new finality point only if the new block's finality score is higher
// by 2 than the existing finality point's
if selectedTip.finalityScore(dag) < dag.lastFinalityPoint.finalityScore(dag)+2 {
return
}
var currentNode *blockNode
for currentNode = selectedTip.selectedParent; ; currentNode = currentNode.selectedParent {
// We look for the first node in the selected parent chain that has a higher finality score than the last finality point.
if currentNode.selectedParent.finalityScore(dag) == dag.lastFinalityPoint.finalityScore(dag) {
break
}
}
dag.lastFinalityPoint = currentNode
spawn(func() {
dag.finalizeNodesBelowFinalityPoint(true)
})
}
func (dag *BlockDAG) finalizeNodesBelowFinalityPoint(deleteDiffData bool) {
queue := make([]*blockNode, 0, len(dag.lastFinalityPoint.parents))
for parent := range dag.lastFinalityPoint.parents {
queue = append(queue, parent)
}
var nodesToDelete []*blockNode
if deleteDiffData {
nodesToDelete = make([]*blockNode, 0, dag.dagParams.FinalityInterval)
}
for len(queue) > 0 {
var current *blockNode
current, queue = queue[0], queue[1:]
if !current.isFinalized {
current.isFinalized = true
if deleteDiffData {
nodesToDelete = append(nodesToDelete, current)
}
for parent := range current.parents {
queue = append(queue, parent)
}
}
}
if deleteDiffData {
err := dag.utxoDiffStore.removeBlocksDiffData(dbaccess.NoTx(), nodesToDelete)
if err != nil {
panic(fmt.Sprintf("Error removing diff data from utxoDiffStore: %s", err))
}
}
}
// IsKnownFinalizedBlock returns whether the block is below the finality point.
// IsKnownFinalizedBlock might be false-negative because node finality status is
// updated in a separate goroutine. To get a definite answer if a block
// is finalized or not, use dag.checkFinalityRules.
func (dag *BlockDAG) IsKnownFinalizedBlock(blockHash *daghash.Hash) bool {
node := dag.index.LookupNode(blockHash)
return node != nil && node.isFinalized
}
// NextBlockCoinbaseTransaction prepares the coinbase transaction for the next mined block
//
// This function CAN'T be called with the DAG lock held.
func (dag *BlockDAG) NextBlockCoinbaseTransaction(scriptPubKey []byte, extraData []byte) (*util.Tx, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.NextBlockCoinbaseTransactionNoLock(scriptPubKey, extraData)
}
// NextBlockCoinbaseTransactionNoLock prepares the coinbase transaction for the next mined block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) NextBlockCoinbaseTransactionNoLock(scriptPubKey []byte, extraData []byte) (*util.Tx, error) {
txsAcceptanceData, err := dag.TxsAcceptedByVirtual()
if err != nil {
return nil, err
}
return dag.virtual.blockNode.expectedCoinbaseTransaction(dag, txsAcceptanceData, scriptPubKey, extraData)
}
// NextAcceptedIDMerkleRootNoLock prepares the acceptedIDMerkleRoot for the next mined block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) NextAcceptedIDMerkleRootNoLock() (*daghash.Hash, error) {
txsAcceptanceData, err := dag.TxsAcceptedByVirtual()
if err != nil {
return nil, err
}
return calculateAcceptedIDMerkleRoot(txsAcceptanceData), nil
}
// TxsAcceptedByVirtual retrieves transactions accepted by the current virtual block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) TxsAcceptedByVirtual() (MultiBlockTxsAcceptanceData, error) {
_, _, txsAcceptanceData, err := dag.pastUTXO(&dag.virtual.blockNode)
return txsAcceptanceData, err
}
// TxsAcceptedByBlockHash retrieves transactions accepted by the given block
//
// This function MUST be called with the DAG read-lock held
func (dag *BlockDAG) TxsAcceptedByBlockHash(blockHash *daghash.Hash) (MultiBlockTxsAcceptanceData, error) {
node := dag.index.LookupNode(blockHash)
if node == nil {
return nil, errors.Errorf("Couldn't find block %s", blockHash)
}
_, _, txsAcceptanceData, err := dag.pastUTXO(node)
return txsAcceptanceData, err
}
// applyDAGChanges does the following:
// 1. Connects each of the new block's parents to the block.
// 2. Adds the new block to the DAG's tips.
// 3. Updates the DAG's full UTXO set.
// 4. Updates each of the tips' utxoDiff.
// 5. Applies the new virtual's blue score to all the unaccepted UTXOs
// 6. Adds the block to the reachability structures
// 7. Adds the multiset of the block to the multiset store.
// 8. Updates the finality point of the DAG (if required).
//
// It returns the diff in the virtual block's UTXO set.
//
// This function MUST be called with the DAG state lock held (for writes).
func (dag *BlockDAG) applyDAGChanges(node *blockNode, newBlockPastUTXO UTXOSet,
newBlockMultiset *secp256k1.MultiSet, selectedParentAnticone []*blockNode) (
virtualUTXODiff *UTXODiff, chainUpdates *chainUpdates, err error) {
// Add the block to the reachability structures
err = dag.updateReachability(node, selectedParentAnticone)
if err != nil {
return nil, nil, errors.Wrap(err, "failed updating reachability")
}
dag.multisetStore.setMultiset(node, newBlockMultiset)
if err = node.updateParents(dag, newBlockPastUTXO); err != nil {
return nil, nil, errors.Wrapf(err, "failed updating parents of %s", node)
}
// Update the virtual block's parents (the DAG tips) to include the new block.
chainUpdates = dag.virtual.AddTip(node)
// Build a UTXO set for the new virtual block
newVirtualUTXO, _, _, err := dag.pastUTXO(&dag.virtual.blockNode)
if err != nil {
return nil, nil, errors.Wrap(err, "could not restore past UTXO for virtual")
}
// Apply new utxoDiffs to all the tips
err = updateTipsUTXO(dag, newVirtualUTXO)
if err != nil {
return nil, nil, errors.Wrap(err, "failed updating the tips' UTXO")
}
// It is now safe to meld the UTXO set to base.
diffSet := newVirtualUTXO.(*DiffUTXOSet)
virtualUTXODiff = diffSet.UTXODiff
err = dag.meldVirtualUTXO(diffSet)
if err != nil {
return nil, nil, errors.Wrap(err, "failed melding the virtual UTXO")
}
dag.index.SetStatusFlags(node, statusValid)
// And now we can update the finality point of the DAG (if required)
dag.updateFinalityPoint()
return virtualUTXODiff, chainUpdates, nil
}
func (dag *BlockDAG) meldVirtualUTXO(newVirtualUTXODiffSet *DiffUTXOSet) error {
dag.utxoLock.Lock()
defer dag.utxoLock.Unlock()
return newVirtualUTXODiffSet.meldToBase()
}
// checkDoubleSpendsWithBlockPast checks that each block transaction
// has a corresponding UTXO in the block pastUTXO.
func checkDoubleSpendsWithBlockPast(pastUTXO UTXOSet, blockTransactions []*util.Tx) error {
for _, tx := range blockTransactions {
if tx.IsCoinBase() {
continue
}
for _, txIn := range tx.MsgTx().TxIn {
if _, ok := pastUTXO.Get(txIn.PreviousOutpoint); !ok {
return ruleError(ErrMissingTxOut, fmt.Sprintf("missing transaction "+
"output %s in the utxo set", txIn.PreviousOutpoint))
}
}
}
return nil
}
// verifyAndBuildUTXO verifies all transactions in the given block and builds its UTXO
// to save extra traversals it returns the transactions acceptance data, the compactFeeData
// for the new block and its multiset.
func (node *blockNode) verifyAndBuildUTXO(dag *BlockDAG, transactions []*util.Tx, fastAdd bool) (
newBlockUTXO UTXOSet, txsAcceptanceData MultiBlockTxsAcceptanceData, newBlockFeeData compactFeeData, multiset *secp256k1.MultiSet, err error) {
pastUTXO, selectedParentPastUTXO, txsAcceptanceData, err := dag.pastUTXO(node)
if err != nil {
return nil, nil, nil, nil, err
}
err = node.validateAcceptedIDMerkleRoot(dag, txsAcceptanceData)
if err != nil {
return nil, nil, nil, nil, err
}
feeData, err := dag.checkConnectToPastUTXO(node, pastUTXO, transactions, fastAdd)
if err != nil {
return nil, nil, nil, nil, err
}
multiset, err = node.calcMultiset(dag, txsAcceptanceData, selectedParentPastUTXO)
if err != nil {
return nil, nil, nil, nil, err
}
calculatedMultisetHash := daghash.Hash(*multiset.Finalize())
if !calculatedMultisetHash.IsEqual(node.utxoCommitment) {
str := fmt.Sprintf("block %s UTXO commitment is invalid - block "+
"header indicates %s, but calculated value is %s", node.hash,
node.utxoCommitment, calculatedMultisetHash)
return nil, nil, nil, nil, ruleError(ErrBadUTXOCommitment, str)
}
return pastUTXO, txsAcceptanceData, feeData, multiset, nil
}
// TxAcceptanceData stores a transaction together with an indication
// if it was accepted or not by some block
type TxAcceptanceData struct {
Tx *util.Tx
IsAccepted bool
}
// BlockTxsAcceptanceData stores all transactions in a block with an indication
// if they were accepted or not by some other block
type BlockTxsAcceptanceData struct {
BlockHash daghash.Hash
TxAcceptanceData []TxAcceptanceData
}
// MultiBlockTxsAcceptanceData stores data about which transactions were accepted by a block
// It's a slice of the block's blues block IDs and their transaction acceptance data
type MultiBlockTxsAcceptanceData []BlockTxsAcceptanceData
// FindAcceptanceData finds the BlockTxsAcceptanceData that matches blockHash
func (data MultiBlockTxsAcceptanceData) FindAcceptanceData(blockHash *daghash.Hash) (*BlockTxsAcceptanceData, bool) {
for _, acceptanceData := range data {
if acceptanceData.BlockHash.IsEqual(blockHash) {
return &acceptanceData, true
}
}
return nil, false
}
func genesisPastUTXO(virtual *virtualBlock) UTXOSet {
// The genesis has no past UTXO, so we create an empty UTXO
// set by creating a diff UTXO set with the virtual UTXO
// set, and adding all of its entries in toRemove
diff := NewUTXODiff()
for outpoint, entry := range virtual.utxoSet.utxoCollection {
diff.toRemove[outpoint] = entry
}
genesisPastUTXO := UTXOSet(NewDiffUTXOSet(virtual.utxoSet, diff))
return genesisPastUTXO
}
func (node *blockNode) fetchBlueBlocks() ([]*util.Block, error) {
blueBlocks := make([]*util.Block, len(node.blues))
for i, blueBlockNode := range node.blues {
blueBlock, err := fetchBlockByHash(dbaccess.NoTx(), blueBlockNode.hash)
if err != nil {
return nil, err
}
blueBlocks[i] = blueBlock
}
return blueBlocks, nil
}
// applyBlueBlocks adds all transactions in the blue blocks to the selectedParent's past UTXO set
// Purposefully ignoring failures - these are just unaccepted transactions
// Writing down which transactions were accepted or not in txsAcceptanceData
func (node *blockNode) applyBlueBlocks(selectedParentPastUTXO UTXOSet, blueBlocks []*util.Block) (
pastUTXO UTXOSet, multiBlockTxsAcceptanceData MultiBlockTxsAcceptanceData, err error) {
pastUTXO = selectedParentPastUTXO.(*DiffUTXOSet).cloneWithoutBase()
multiBlockTxsAcceptanceData = make(MultiBlockTxsAcceptanceData, len(blueBlocks))
// Add blueBlocks to multiBlockTxsAcceptanceData in topological order. This
// is so that anyone who iterates over it would process blocks (and transactions)
// in their order of appearance in the DAG.
for i := 0; i < len(blueBlocks); i++ {
blueBlock := blueBlocks[i]
transactions := blueBlock.Transactions()
blockTxsAcceptanceData := BlockTxsAcceptanceData{
BlockHash: *blueBlock.Hash(),
TxAcceptanceData: make([]TxAcceptanceData, len(transactions)),
}
isSelectedParent := i == 0
for j, tx := range blueBlock.Transactions() {
var isAccepted bool
// Coinbase transaction outputs are added to the UTXO
// only if they are in the selected parent chain.
if !isSelectedParent && tx.IsCoinBase() {
isAccepted = false
} else {
isAccepted, err = pastUTXO.AddTx(tx.MsgTx(), node.blueScore)
if err != nil {
return nil, nil, err
}
}
blockTxsAcceptanceData.TxAcceptanceData[j] = TxAcceptanceData{Tx: tx, IsAccepted: isAccepted}
}
multiBlockTxsAcceptanceData[i] = blockTxsAcceptanceData
}
return pastUTXO, multiBlockTxsAcceptanceData, nil
}
// updateParents adds this block to the children sets of its parents
// and updates the diff of any parent whose DiffChild is this block
func (node *blockNode) updateParents(dag *BlockDAG, newBlockUTXO UTXOSet) error {
node.updateParentsChildren()
return node.updateParentsDiffs(dag, newBlockUTXO)
}
// updateParentsDiffs updates the diff of any parent whose DiffChild is this block
func (node *blockNode) updateParentsDiffs(dag *BlockDAG, newBlockUTXO UTXOSet) error {
virtualDiffFromNewBlock, err := dag.virtual.utxoSet.diffFrom(newBlockUTXO)
if err != nil {
return err
}
err = dag.utxoDiffStore.setBlockDiff(node, virtualDiffFromNewBlock)
if err != nil {
return err
}
for parent := range node.parents {
diffChild, err := dag.utxoDiffStore.diffChildByNode(parent)
if err != nil {
return err
}
if diffChild == nil {
parentPastUTXO, err := dag.restorePastUTXO(parent)
if err != nil {
return err
}
err = dag.utxoDiffStore.setBlockDiffChild(parent, node)
if err != nil {
return err
}
diff, err := newBlockUTXO.diffFrom(parentPastUTXO)
if err != nil {
return err
}
err = dag.utxoDiffStore.setBlockDiff(parent, diff)
if err != nil {
return err
}
}
}
return nil
}
// pastUTXO returns the UTXO of a given block's past
// To save traversals over the blue blocks, it also returns the transaction acceptance data for
// all blue blocks
func (dag *BlockDAG) pastUTXO(node *blockNode) (
pastUTXO, selectedParentPastUTXO UTXOSet, bluesTxsAcceptanceData MultiBlockTxsAcceptanceData, err error) {
if node.isGenesis() {
return genesisPastUTXO(dag.virtual), nil, MultiBlockTxsAcceptanceData{}, nil
}
selectedParentPastUTXO, err = dag.restorePastUTXO(node.selectedParent)
if err != nil {
return nil, nil, nil, err
}
blueBlocks, err := node.fetchBlueBlocks()
if err != nil {
return nil, nil, nil, err
}
pastUTXO, bluesTxsAcceptanceData, err = node.applyBlueBlocks(selectedParentPastUTXO, blueBlocks)
if err != nil {
return nil, nil, nil, err
}
return pastUTXO, selectedParentPastUTXO, bluesTxsAcceptanceData, nil
}
// restorePastUTXO restores the UTXO of a given block from its diff
func (dag *BlockDAG) restorePastUTXO(node *blockNode) (UTXOSet, error) {
stack := []*blockNode{}
// Iterate over the chain of diff-childs from node till virtual and add them
// all into a stack
for current := node; current != nil; {
stack = append(stack, current)
var err error
current, err = dag.utxoDiffStore.diffChildByNode(current)
if err != nil {
return nil, err
}
}
// Start with the top item in the stack, going over it top-to-bottom,
// applying the UTXO-diff one-by-one.
topNode, stack := stack[len(stack)-1], stack[:len(stack)-1] // pop the top item in the stack
topNodeDiff, err := dag.utxoDiffStore.diffByNode(topNode)
if err != nil {
return nil, err
}
accumulatedDiff := topNodeDiff.clone()
for i := len(stack) - 1; i >= 0; i-- {
diff, err := dag.utxoDiffStore.diffByNode(stack[i])
if err != nil {
return nil, err
}
// Use withDiffInPlace, otherwise copying the diffs again and again create a polynomial overhead
err = accumulatedDiff.withDiffInPlace(diff)
if err != nil {
return nil, err
}
}
return NewDiffUTXOSet(dag.virtual.utxoSet, accumulatedDiff), nil
}
// updateTipsUTXO builds and applies new diff UTXOs for all the DAG's tips
func updateTipsUTXO(dag *BlockDAG, virtualUTXO UTXOSet) error {
for tip := range dag.virtual.parents {
tipPastUTXO, err := dag.restorePastUTXO(tip)
if err != nil {
return err
}
diff, err := virtualUTXO.diffFrom(tipPastUTXO)
if err != nil {
return err
}
err = dag.utxoDiffStore.setBlockDiff(tip, diff)
if err != nil {
return err
}
}
return nil
}
// isCurrent returns whether or not the DAG believes it is current. Several
// factors are used to guess, but the key factors that allow the DAG to
// believe it is current are:
// - Latest block has a timestamp newer than 24 hours ago
//
// This function MUST be called with the DAG state lock held (for reads).
func (dag *BlockDAG) isCurrent() bool {
// Not current if the virtual's selected parent has a timestamp
// before 24 hours ago. If the DAG is empty, we take the genesis
// block timestamp.
//
// The DAG appears to be current if none of the checks reported
// otherwise.
var dagTimestamp int64
selectedTip := dag.selectedTip()
if selectedTip == nil {
dagTimestamp = dag.dagParams.GenesisBlock.Header.Timestamp.Unix()
} else {
dagTimestamp = selectedTip.timestamp
}
dagTime := time.Unix(dagTimestamp, 0)
return dag.Now().Sub(dagTime) <= isDAGCurrentMaxDiff
}
// Now returns the adjusted time according to
// dag.timeSource. See TimeSource.Now for
// more details.
func (dag *BlockDAG) Now() time.Time {
return dag.timeSource.Now()
}
// IsCurrent returns whether or not the DAG believes it is current. Several
// factors are used to guess, but the key factors that allow the DAG to
// believe it is current are:
// - Latest block has a timestamp newer than 24 hours ago
//
// This function is safe for concurrent access.
func (dag *BlockDAG) IsCurrent() bool {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.isCurrent()
}
// selectedTip returns the current selected tip for the DAG.
// It will return nil if there is no tip.
func (dag *BlockDAG) selectedTip() *blockNode {
return dag.virtual.selectedParent
}
// SelectedTipHeader returns the header of the current selected tip for the DAG.
// It will return nil if there is no tip.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) SelectedTipHeader() *wire.BlockHeader {
selectedTip := dag.selectedTip()
if selectedTip == nil {
return nil
}
return selectedTip.Header()
}
// SelectedTipHash returns the hash of the current selected tip for the DAG.
// It will return nil if there is no tip.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) SelectedTipHash() *daghash.Hash {
selectedTip := dag.selectedTip()
if selectedTip == nil {
return nil
}
return selectedTip.hash
}
// UTXOSet returns the DAG's UTXO set
func (dag *BlockDAG) UTXOSet() *FullUTXOSet {
return dag.virtual.utxoSet
}
// CalcPastMedianTime returns the past median time of the DAG.
func (dag *BlockDAG) CalcPastMedianTime() time.Time {
return dag.virtual.tips().bluest().PastMedianTime(dag)
}
// GetUTXOEntry returns the requested unspent transaction output. The returned
// instance must be treated as immutable since it is shared by all callers.
//
// This function is safe for concurrent access. However, the returned entry (if
// any) is NOT.
func (dag *BlockDAG) GetUTXOEntry(outpoint wire.Outpoint) (*UTXOEntry, bool) {
return dag.virtual.utxoSet.get(outpoint)
}
// BlueScoreByBlockHash returns the blue score of a block with the given hash.
func (dag *BlockDAG) BlueScoreByBlockHash(hash *daghash.Hash) (uint64, error) {
node := dag.index.LookupNode(hash)
if node == nil {
return 0, errors.Errorf("block %s is unknown", hash)
}
return node.blueScore, nil
}
// BluesByBlockHash returns the blues of the block for the given hash.
func (dag *BlockDAG) BluesByBlockHash(hash *daghash.Hash) ([]*daghash.Hash, error) {
node := dag.index.LookupNode(hash)
if node == nil {
return nil, errors.Errorf("block %s is unknown", hash)
}
hashes := make([]*daghash.Hash, len(node.blues))
for i, blue := range node.blues {
hashes[i] = blue.hash
}
return hashes, nil
}
// BlockConfirmationsByHash returns the confirmations number for a block with the
// given hash. See blockConfirmations for further details.
//
// This function is safe for concurrent access
func (dag *BlockDAG) BlockConfirmationsByHash(hash *daghash.Hash) (uint64, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
return dag.BlockConfirmationsByHashNoLock(hash)
}
// BlockConfirmationsByHashNoLock is lock free version of BlockConfirmationsByHash
//
// This function is unsafe for concurrent access.
func (dag *BlockDAG) BlockConfirmationsByHashNoLock(hash *daghash.Hash) (uint64, error) {
if hash.IsEqual(&daghash.ZeroHash) {
return 0, nil
}
node := dag.index.LookupNode(hash)
if node == nil {
return 0, errors.Errorf("block %s is unknown", hash)
}
return dag.blockConfirmations(node)
}
// UTXOConfirmations returns the confirmations for the given outpoint, if it exists
// in the DAG's UTXO set.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) UTXOConfirmations(outpoint *wire.Outpoint) (uint64, bool) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
utxoEntry, ok := dag.GetUTXOEntry(*outpoint)
if !ok {
return 0, false
}
confirmations := dag.SelectedTipBlueScore() - utxoEntry.BlockBlueScore() + 1
return confirmations, true
}
// blockConfirmations returns the current confirmations number of the given node
// The confirmations number is defined as follows:
// * If the node is in the selected tip red set -> 0
// * If the node is the selected tip -> 1
// * Otherwise -> selectedTip.blueScore - acceptingBlock.blueScore + 2
func (dag *BlockDAG) blockConfirmations(node *blockNode) (uint64, error) {
acceptingBlock, err := dag.acceptingBlock(node)
if err != nil {
return 0, err
}
// if acceptingBlock is nil, the node is red
if acceptingBlock == nil {
return 0, nil
}
return dag.selectedTip().blueScore - acceptingBlock.blueScore + 1, nil
}
// acceptingBlock finds the node in the selected-parent chain that had accepted
// the given node
func (dag *BlockDAG) acceptingBlock(node *blockNode) (*blockNode, error) {
// Return an error if the node is the virtual block
if node == &dag.virtual.blockNode {
return nil, errors.New("cannot get acceptingBlock for virtual")
}
// If the node is a chain-block itself, the accepting block is its chain-child
isNodeInSelectedParentChain, err := dag.IsInSelectedParentChain(node.hash)
if err != nil {
return nil, err
}
if isNodeInSelectedParentChain {
if len(node.children) == 0 {
// If the node is the selected tip, it doesn't have an accepting block
return nil, nil
}
for child := range node.children {
isChildInSelectedParentChain, err := dag.IsInSelectedParentChain(child.hash)
if err != nil {
return nil, err
}
if isChildInSelectedParentChain {
return child, nil
}
}
return nil, errors.Errorf("chain block %s does not have a chain child", node.hash)
}
// Find the only chain block that may contain the node in its blues
candidateAcceptingBlock := dag.oldestChainBlockWithBlueScoreGreaterThan(node.blueScore)
// if no candidate is found, it means that the node has same or more
// blue score than the selected tip and is found in its anticone, so
// it doesn't have an accepting block
if candidateAcceptingBlock == nil {
return nil, nil
}
// candidateAcceptingBlock is the accepting block only if it actually contains
// the node in its blues
for _, blue := range candidateAcceptingBlock.blues {
if blue == node {
return candidateAcceptingBlock, nil
}
}
// Otherwise, the node is red or in the selected tip anticone, and
// doesn't have an accepting block
return nil, nil
}
// oldestChainBlockWithBlueScoreGreaterThan finds the oldest chain block with a blue score
// greater than blueScore. If no such block exists, this method returns nil
func (dag *BlockDAG) oldestChainBlockWithBlueScoreGreaterThan(blueScore uint64) *blockNode {
chainBlockIndex, ok := util.SearchSlice(len(dag.virtual.selectedParentChainSlice), func(i int) bool {
selectedPathNode := dag.virtual.selectedParentChainSlice[i]
return selectedPathNode.blueScore > blueScore
})
if !ok {
return nil
}
return dag.virtual.selectedParentChainSlice[chainBlockIndex]
}
// IsInSelectedParentChain returns whether or not a block hash is found in the selected
// parent chain. Note that this method returns an error if the given blockHash does not
// exist within the block index.
//
// This method MUST be called with the DAG lock held
func (dag *BlockDAG) IsInSelectedParentChain(blockHash *daghash.Hash) (bool, error) {
blockNode := dag.index.LookupNode(blockHash)
if blockNode == nil {
str := fmt.Sprintf("block %s is not in the DAG", blockHash)
return false, errNotInDAG(str)
}
return dag.virtual.selectedParentChainSet.contains(blockNode), nil
}
// SelectedParentChain returns the selected parent chain starting from blockHash (exclusive)
// up to the virtual (exclusive). If blockHash is nil then the genesis block is used. If
// blockHash is not within the select parent chain, go down its own selected parent chain,
// while collecting each block hash in removedChainHashes, until reaching a block within
// the main selected parent chain.
//
// This method MUST be called with the DAG lock held
func (dag *BlockDAG) SelectedParentChain(blockHash *daghash.Hash) ([]*daghash.Hash, []*daghash.Hash, error) {
if blockHash == nil {
blockHash = dag.genesis.hash
}
if !dag.IsInDAG(blockHash) {
return nil, nil, errors.Errorf("blockHash %s does not exist in the DAG", blockHash)
}
// If blockHash is not in the selected parent chain, go down its selected parent chain
// until we find a block that is in the main selected parent chain.
var removedChainHashes []*daghash.Hash
isBlockInSelectedParentChain, err := dag.IsInSelectedParentChain(blockHash)
if err != nil {
return nil, nil, err
}
for !isBlockInSelectedParentChain {
removedChainHashes = append(removedChainHashes, blockHash)
node := dag.index.LookupNode(blockHash)
blockHash = node.selectedParent.hash
isBlockInSelectedParentChain, err = dag.IsInSelectedParentChain(blockHash)
if err != nil {
return nil, nil, err
}
}
// Find the index of the blockHash in the selectedParentChainSlice
blockHashIndex := len(dag.virtual.selectedParentChainSlice) - 1
for blockHashIndex >= 0 {
node := dag.virtual.selectedParentChainSlice[blockHashIndex]
if node.hash.IsEqual(blockHash) {
break
}
blockHashIndex--
}
// Copy all the addedChainHashes starting from blockHashIndex (exclusive)
addedChainHashes := make([]*daghash.Hash, len(dag.virtual.selectedParentChainSlice)-blockHashIndex-1)
for i, node := range dag.virtual.selectedParentChainSlice[blockHashIndex+1:] {
addedChainHashes[i] = node.hash
}
return removedChainHashes, addedChainHashes, nil
}
// SelectedTipBlueScore returns the blue score of the selected tip.
func (dag *BlockDAG) SelectedTipBlueScore() uint64 {
return dag.selectedTip().blueScore
}
// VirtualBlueScore returns the blue score of the current virtual block
func (dag *BlockDAG) VirtualBlueScore() uint64 {
return dag.virtual.blueScore
}
// BlockCount returns the number of blocks in the DAG
func (dag *BlockDAG) BlockCount() uint64 {
return dag.blockCount
}
// TipHashes returns the hashes of the DAG's tips
func (dag *BlockDAG) TipHashes() []*daghash.Hash {
return dag.virtual.tips().hashes()
}
// CurrentBits returns the bits of the tip with the lowest bits, which also means it has highest difficulty.
func (dag *BlockDAG) CurrentBits() uint32 {
tips := dag.virtual.tips()
minBits := uint32(math.MaxUint32)
for tip := range tips {
if minBits > tip.Header().Bits {
minBits = tip.Header().Bits
}
}
return minBits
}
// HeaderByHash returns the block header identified by the given hash or an
// error if it doesn't exist.
func (dag *BlockDAG) HeaderByHash(hash *daghash.Hash) (*wire.BlockHeader, error) {
node := dag.index.LookupNode(hash)
if node == nil {
err := errors.Errorf("block %s is not known", hash)
return &wire.BlockHeader{}, err
}
return node.Header(), nil
}
// ChildHashesByHash returns the child hashes of the block with the given hash in the
// DAG.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) ChildHashesByHash(hash *daghash.Hash) ([]*daghash.Hash, error) {
node := dag.index.LookupNode(hash)
if node == nil {
str := fmt.Sprintf("block %s is not in the DAG", hash)
return nil, errNotInDAG(str)
}
return node.children.hashes(), nil
}
// SelectedParentHash returns the selected parent hash of the block with the given hash in the
// DAG.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) SelectedParentHash(blockHash *daghash.Hash) (*daghash.Hash, error) {
node := dag.index.LookupNode(blockHash)
if node == nil {
str := fmt.Sprintf("block %s is not in the DAG", blockHash)
return nil, errNotInDAG(str)
}
if node.selectedParent == nil {
return nil, nil
}
return node.selectedParent.hash, nil
}
// antiPastHashesBetween returns the hashes of the blocks between the
// lowHash's antiPast and highHash's antiPast, or up to the provided
// max number of block hashes.
//
// This function MUST be called with the DAG state lock held (for reads).
func (dag *BlockDAG) antiPastHashesBetween(lowHash, highHash *daghash.Hash, maxHashes uint64) ([]*daghash.Hash, error) {
nodes, err := dag.antiPastBetween(lowHash, highHash, maxHashes)
if err != nil {
return nil, err
}
hashes := make([]*daghash.Hash, len(nodes))
for i, node := range nodes {
hashes[i] = node.hash
}
return hashes, nil
}
// antiPastBetween returns the blockNodes between the lowHash's antiPast
// and highHash's antiPast, or up to the provided max number of blocks.
//
// This function MUST be called with the DAG state lock held (for reads).
func (dag *BlockDAG) antiPastBetween(lowHash, highHash *daghash.Hash, maxEntries uint64) ([]*blockNode, error) {
lowNode := dag.index.LookupNode(lowHash)
if lowNode == nil {
return nil, errors.Errorf("Couldn't find low hash %s", lowHash)
}
highNode := dag.index.LookupNode(highHash)
if highNode == nil {
return nil, errors.Errorf("Couldn't find high hash %s", highHash)
}
if lowNode.blueScore >= highNode.blueScore {
return nil, errors.Errorf("Low hash blueScore >= high hash blueScore (%d >= %d)",
lowNode.blueScore, highNode.blueScore)
}
// In order to get no more then maxEntries blocks from the
// future of the lowNode (including itself), we iterate the
// selected parent chain of the highNode and stop once we reach
// highNode.blueScore-lowNode.blueScore+1 <= maxEntries. That
// stop point becomes the new highNode.
// Using blueScore as an approximation is considered to be
// fairly accurate because we presume that most DAG blocks are
// blue.
for highNode.blueScore-lowNode.blueScore+1 > maxEntries {
highNode = highNode.selectedParent
}
// Collect every node in highNode's past (including itself) but
// NOT in the lowNode's past (excluding itself) into an up-heap
// (a heap sorted by blueScore from lowest to greatest).
visited := newBlockSet()
candidateNodes := newUpHeap()
queue := newDownHeap()
queue.Push(highNode)
for queue.Len() > 0 {
current := queue.pop()
if visited.contains(current) {
continue
}
visited.add(current)
isCurrentAncestorOfLowNode, err := dag.isAncestorOf(current, lowNode)
if err != nil {
return nil, err
}
if isCurrentAncestorOfLowNode {
continue
}
candidateNodes.Push(current)
for parent := range current.parents {
queue.Push(parent)
}
}
// Pop candidateNodes into a slice. Since candidateNodes is
// an up-heap, it's guaranteed to be ordered from low to high
nodesLen := int(maxEntries)
if candidateNodes.Len() < nodesLen {
nodesLen = candidateNodes.Len()
}
nodes := make([]*blockNode, nodesLen)
for i := 0; i < nodesLen; i++ {
nodes[i] = candidateNodes.pop()
}
return nodes, nil
}
// AntiPastHashesBetween returns the hashes of the blocks between the
// lowHash's antiPast and highHash's antiPast, or up to the provided
// max number of block hashes.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) AntiPastHashesBetween(lowHash, highHash *daghash.Hash, maxHashes uint64) ([]*daghash.Hash, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
hashes, err := dag.antiPastHashesBetween(lowHash, highHash, maxHashes)
if err != nil {
return nil, err
}
return hashes, nil
}
// antiPastHeadersBetween returns the headers of the blocks between the
// lowHash's antiPast and highHash's antiPast, or up to the provided
// max number of block headers.
//
// This function MUST be called with the DAG state lock held (for reads).
func (dag *BlockDAG) antiPastHeadersBetween(lowHash, highHash *daghash.Hash, maxHeaders uint64) ([]*wire.BlockHeader, error) {
nodes, err := dag.antiPastBetween(lowHash, highHash, maxHeaders)
if err != nil {
return nil, err
}
headers := make([]*wire.BlockHeader, len(nodes))
for i, node := range nodes {
headers[i] = node.Header()
}
return headers, nil
}
// GetTopHeaders returns the top wire.MaxBlockHeadersPerMsg block headers ordered by blue score.
func (dag *BlockDAG) GetTopHeaders(highHash *daghash.Hash, maxHeaders uint64) ([]*wire.BlockHeader, error) {
highNode := &dag.virtual.blockNode
if highHash != nil {
highNode = dag.index.LookupNode(highHash)
if highNode == nil {
return nil, errors.Errorf("Couldn't find the high hash %s in the dag", highHash)
}
}
headers := make([]*wire.BlockHeader, 0, highNode.blueScore)
queue := newDownHeap()
queue.pushSet(highNode.parents)
visited := newBlockSet()
for i := uint32(0); queue.Len() > 0 && uint64(len(headers)) < maxHeaders; i++ {
current := queue.pop()
if !visited.contains(current) {
visited.add(current)
headers = append(headers, current.Header())
queue.pushSet(current.parents)
}
}
return headers, nil
}
// Lock locks the DAG's UTXO set for writing.
func (dag *BlockDAG) Lock() {
dag.dagLock.Lock()
}
// Unlock unlocks the DAG's UTXO set for writing.
func (dag *BlockDAG) Unlock() {
dag.dagLock.Unlock()
}
// RLock locks the DAG's UTXO set for reading.
func (dag *BlockDAG) RLock() {
dag.dagLock.RLock()
}
// RUnlock unlocks the DAG's UTXO set for reading.
func (dag *BlockDAG) RUnlock() {
dag.dagLock.RUnlock()
}
// AntiPastHeadersBetween returns the headers of the blocks between the
// lowHash's antiPast and highHash's antiPast, or up to
// wire.MaxBlockHeadersPerMsg block headers.
//
// This function is safe for concurrent access.
func (dag *BlockDAG) AntiPastHeadersBetween(lowHash, highHash *daghash.Hash, maxHeaders uint64) ([]*wire.BlockHeader, error) {
dag.dagLock.RLock()
defer dag.dagLock.RUnlock()
headers, err := dag.antiPastHeadersBetween(lowHash, highHash, maxHeaders)
if err != nil {
return nil, err
}
return headers, nil
}
// SubnetworkID returns the node's subnetwork ID
func (dag *BlockDAG) SubnetworkID() *subnetworkid.SubnetworkID {
return dag.subnetworkID
}
// ForEachHash runs the given fn on every hash that's currently known to
// the DAG.
//
// This function is NOT safe for concurrent access. It is meant to be
// used either on initialization or when the dag lock is held for reads.
func (dag *BlockDAG) ForEachHash(fn func(hash daghash.Hash) error) error {
for hash := range dag.index.index {
err := fn(hash)
if err != nil {
return err
}
}
return nil
}
func (dag *BlockDAG) addDelayedBlock(block *util.Block, delay time.Duration) error {
processTime := dag.Now().Add(delay)
log.Debugf("Adding block to delayed blocks queue (block hash: %s, process time: %s)", block.Hash().String(), processTime)
delayedBlock := &delayedBlock{
block: block,
processTime: processTime,
}
dag.delayedBlocks[*block.Hash()] = delayedBlock
dag.delayedBlocksQueue.Push(delayedBlock)
return dag.processDelayedBlocks()
}
// processDelayedBlocks loops over all delayed blocks and processes blocks which are due.
// This method is invoked after processing a block (ProcessBlock method).
func (dag *BlockDAG) processDelayedBlocks() error {
// Check if the delayed block with the earliest process time should be processed
for dag.delayedBlocksQueue.Len() > 0 {
earliestDelayedBlockProcessTime := dag.peekDelayedBlock().processTime
if earliestDelayedBlockProcessTime.After(dag.Now()) {
break
}
delayedBlock := dag.popDelayedBlock()
_, _, err := dag.processBlockNoLock(delayedBlock.block, BFAfterDelay)
if err != nil {
log.Errorf("Error while processing delayed block (block %s)", delayedBlock.block.Hash().String())
// Rule errors should not be propagated as they refer only to the delayed block,
// while this function runs in the context of another block
if !errors.As(err, &RuleError{}) {
return err
}
}
log.Debugf("Processed delayed block (block %s)", delayedBlock.block.Hash().String())
}
return nil
}
// popDelayedBlock removes the topmost (delayed block with earliest process time) of the queue and returns it.
func (dag *BlockDAG) popDelayedBlock() *delayedBlock {
delayedBlock := dag.delayedBlocksQueue.pop()
delete(dag.delayedBlocks, *delayedBlock.block.Hash())
return delayedBlock
}
func (dag *BlockDAG) peekDelayedBlock() *delayedBlock {
return dag.delayedBlocksQueue.peek()
}
// IndexManager provides a generic interface that is called when blocks are
// connected to the DAG for the purpose of supporting optional indexes.
type IndexManager interface {
// Init is invoked during DAG initialize in order to allow the index
// manager to initialize itself and any indexes it is managing.
Init(*BlockDAG) error
// ConnectBlock is invoked when a new block has been connected to the
// DAG.
ConnectBlock(dbContext *dbaccess.TxContext, blockHash *daghash.Hash, acceptedTxsData MultiBlockTxsAcceptanceData) error
}
// Config is a descriptor which specifies the blockDAG instance configuration.
type Config struct {
// Interrupt specifies a channel the caller can close to signal that
// long running operations, such as catching up indexes or performing
// database migrations, should be interrupted.
//
// This field can be nil if the caller does not desire the behavior.
Interrupt <-chan struct{}
// DAGParams identifies which DAG parameters the DAG is associated
// with.
//
// This field is required.
DAGParams *dagconfig.Params
// TimeSource defines the time source to use for things such as
// block processing and determining whether or not the DAG is current.
TimeSource TimeSource
// SigCache defines a signature cache to use when when validating
// signatures. This is typically most useful when individual
// transactions are already being validated prior to their inclusion in
// a block such as what is usually done via a transaction memory pool.
//
// This field can be nil if the caller is not interested in using a
// signature cache.
SigCache *txscript.SigCache
// IndexManager defines an index manager to use when initializing the
// DAG and connecting blocks.
//
// This field can be nil if the caller does not wish to make use of an
// index manager.
IndexManager IndexManager
// SubnetworkID identifies which subnetwork the DAG is associated
// with.
//
// This field is required.
SubnetworkID *subnetworkid.SubnetworkID
}
// New returns a BlockDAG instance using the provided configuration details.
func New(config *Config) (*BlockDAG, error) {
// Enforce required config fields.
if config.DAGParams == nil {
return nil, errors.New("BlockDAG.New DAG parameters nil")
}
if config.TimeSource == nil {
return nil, errors.New("BlockDAG.New timesource is nil")
}
params := config.DAGParams
targetTimePerBlock := int64(params.TargetTimePerBlock / time.Second)
index := newBlockIndex(params)
dag := &BlockDAG{
dagParams: params,
timeSource: config.TimeSource,
sigCache: config.SigCache,
indexManager: config.IndexManager,
targetTimePerBlock: targetTimePerBlock,
difficultyAdjustmentWindowSize: params.DifficultyAdjustmentWindowSize,
TimestampDeviationTolerance: params.TimestampDeviationTolerance,
powMaxBits: util.BigToCompact(params.PowMax),
index: index,
orphans: make(map[daghash.Hash]*orphanBlock),
prevOrphans: make(map[daghash.Hash][]*orphanBlock),
delayedBlocks: make(map[daghash.Hash]*delayedBlock),
delayedBlocksQueue: newDelayedBlocksHeap(),
warningCaches: newThresholdCaches(vbNumBits),
deploymentCaches: newThresholdCaches(dagconfig.DefinedDeployments),
blockCount: 0,
subnetworkID: config.SubnetworkID,
startTime: time.Now(),
}
dag.virtual = newVirtualBlock(dag, nil)
dag.utxoDiffStore = newUTXODiffStore(dag)
dag.reachabilityStore = newReachabilityStore(dag)
dag.multisetStore = newMultisetStore(dag)
// Initialize the DAG state from the passed database. When the db
// does not yet contain any DAG state, both it and the DAG state
// will be initialized to contain only the genesis block.
err := dag.initDAGState()
if err != nil {
return nil, err
}
// Initialize and catch up all of the currently active optional indexes
// as needed.
if config.IndexManager != nil {
err = config.IndexManager.Init(dag)
if err != nil {
return nil, err
}
}
genesis := index.LookupNode(params.GenesisHash)
if genesis == nil {
genesisBlock := util.NewBlock(dag.dagParams.GenesisBlock)
// To prevent the creation of a new err variable unintentionally so the
// defered function above could read err - declare isOrphan and isDelayed explicitly.
var isOrphan, isDelayed bool
isOrphan, isDelayed, err = dag.ProcessBlock(genesisBlock, BFNone)
if err != nil {
return nil, err
}
if isDelayed {
return nil, errors.New("Genesis block shouldn't be in the future")
}
if isOrphan {
return nil, errors.New("Genesis block is unexpectedly orphan")
}
genesis = index.LookupNode(params.GenesisHash)
}
// Save a reference to the genesis block.
dag.genesis = genesis
// Initialize rule change threshold state caches.
err = dag.initThresholdCaches()
if err != nil {
return nil, err
}
selectedTip := dag.selectedTip()
log.Infof("DAG state (blue score %d, hash %s)",
selectedTip.blueScore, selectedTip.hash)
return dag, nil
}
func (dag *BlockDAG) isKnownDelayedBlock(hash *daghash.Hash) bool {
_, exists := dag.delayedBlocks[*hash]
return exists
}