mirror of
https://github.com/kaspanet/kaspad.git
synced 2025-03-30 15:08:33 +00:00

* [NOD-510] Change coinbase flags to kaspad. * [NOD-510] Removed superfluous spaces after periods in comments. * [NOD-510] Rename btcd -> kaspad in the root folder. * [NOD-510] Rename BtcEncode -> KaspaEncode and BtcDecode -> KaspaDecode. * [NOD-510] Rename BtcEncode -> KaspaEncode and BtcDecode -> KaspaDecode. * [NOD-510] Continue renaming btcd -> kaspad. * [NOD-510] Rename btcjson -> kaspajson. * [NOD-510] Rename file names inside kaspajson. * [NOD-510] Rename kaspajson -> jsonrpc. * [NOD-510] Finish renaming in addrmgr. * [NOD-510] Rename package btcec to ecc. * [NOD-510] Finish renaming stuff in blockdag. * [NOD-510] Rename stuff in cmd. * [NOD-510] Rename stuff in config. * [NOD-510] Rename stuff in connmgr. * [NOD-510] Rename stuff in dagconfig. * [NOD-510] Rename stuff in database. * [NOD-510] Rename stuff in docker. * [NOD-510] Rename stuff in integration. * [NOD-510] Rename jsonrpc to rpcmodel. * [NOD-510] Rename stuff in limits. * [NOD-510] Rename stuff in logger. * [NOD-510] Rename stuff in mempool. * [NOD-510] Rename stuff in mining. * [NOD-510] Rename stuff in netsync. * [NOD-510] Rename stuff in peer. * [NOD-510] Rename stuff in release. * [NOD-510] Rename stuff in rpcclient. * [NOD-510] Rename stuff in server. * [NOD-510] Rename stuff in signal. * [NOD-510] Rename stuff in txscript. * [NOD-510] Rename stuff in util. * [NOD-510] Rename stuff in wire. * [NOD-510] Fix failing tests. * [NOD-510] Fix merge errors. * [NOD-510] Fix go vet errors. * [NOD-510] Remove merged file that's no longer relevant. * [NOD-510] Add a comment above Op0. * [NOD-510] Fix some comments referencing Bitcoin Core. * [NOD-510] Fix some more comments referencing Bitcoin Core. * [NOD-510] Fix bitcoin -> kaspa. * [NOD-510] Fix more bitcoin -> kaspa. * [NOD-510] Fix comments, remove DisconnectBlock in addrindex. * [NOD-510] Rename KSPD to KASD. * [NOD-510] Fix comments and user agent.
268 lines
11 KiB
Go
268 lines
11 KiB
Go
// Copyright (c) 2013-2016 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package mempool
|
|
|
|
import (
|
|
"fmt"
|
|
"time"
|
|
|
|
"github.com/kaspanet/kaspad/blockdag"
|
|
"github.com/kaspanet/kaspad/txscript"
|
|
"github.com/kaspanet/kaspad/util"
|
|
"github.com/kaspanet/kaspad/wire"
|
|
)
|
|
|
|
const (
|
|
// maxStandardP2SHSigOps is the maximum number of signature operations
|
|
// that are considered standard in a pay-to-script-hash script.
|
|
maxStandardP2SHSigOps = 15
|
|
|
|
// maxStandardSigScriptSize is the maximum size allowed for a
|
|
// transaction input signature script to be considered standard. This
|
|
// value allows for a 15-of-15 CHECKMULTISIG pay-to-script-hash with
|
|
// compressed keys.
|
|
//
|
|
// The form of the overall script is: OP_0 <15 signatures> OP_PUSHDATA2
|
|
// <2 bytes len> [OP_15 <15 pubkeys> OP_15 OP_CHECKMULTISIG]
|
|
//
|
|
// For the p2sh script portion, each of the 15 compressed pubkeys are
|
|
// 33 bytes (plus one for the OP_DATA_33 opcode), and the thus it totals
|
|
// to (15*34)+3 = 513 bytes. Next, each of the 15 signatures is a max
|
|
// of 73 bytes (plus one for the OP_DATA_73 opcode). Also, there is one
|
|
// extra byte for the initial extra OP_0 push and 3 bytes for the
|
|
// OP_PUSHDATA2 needed to specify the 513 bytes for the script push.
|
|
// That brings the total to 1+(15*74)+3+513 = 1627. This value also
|
|
// adds a few extra bytes to provide a little buffer.
|
|
// (1 + 15*74 + 3) + (15*34 + 3) + 23 = 1650
|
|
maxStandardSigScriptSize = 1650
|
|
|
|
// MaxStandardTxSize is the maximum size allowed for transactions that
|
|
// are considered standard and will therefore be relayed and considered
|
|
// for mining.
|
|
MaxStandardTxSize = 100000
|
|
|
|
// DefaultMinRelayTxFee is the minimum fee in sompi that is required
|
|
// for a transaction to be treated as free for relay and mining
|
|
// purposes. It is also used to help determine if a transaction is
|
|
// considered dust and as a base for calculating minimum required fees
|
|
// for larger transactions. This value is in sompi/1000 bytes.
|
|
DefaultMinRelayTxFee = util.Amount(1000)
|
|
)
|
|
|
|
// calcMinRequiredTxRelayFee returns the minimum transaction fee required for a
|
|
// transaction with the passed serialized size to be accepted into the memory
|
|
// pool and relayed.
|
|
func calcMinRequiredTxRelayFee(serializedSize int64, minRelayTxFee util.Amount) int64 {
|
|
// Calculate the minimum fee for a transaction to be allowed into the
|
|
// mempool and relayed by scaling the base fee (which is the minimum
|
|
// free transaction relay fee). minTxRelayFee is in sompi/kB so
|
|
// multiply by serializedSize (which is in bytes) and divide by 1000 to
|
|
// get minimum sompis.
|
|
minFee := (serializedSize * int64(minRelayTxFee)) / 1000
|
|
|
|
if minFee == 0 && minRelayTxFee > 0 {
|
|
minFee = int64(minRelayTxFee)
|
|
}
|
|
|
|
// Set the minimum fee to the maximum possible value if the calculated
|
|
// fee is not in the valid range for monetary amounts.
|
|
if minFee < 0 || minFee > util.MaxSompi {
|
|
minFee = util.MaxSompi
|
|
}
|
|
|
|
return minFee
|
|
}
|
|
|
|
// checkInputsStandard performs a series of checks on a transaction's inputs
|
|
// to ensure they are "standard". A standard transaction input within the
|
|
// context of this function is one whose referenced public key script is of a
|
|
// standard form and, for pay-to-script-hash, does not have more than
|
|
// maxStandardP2SHSigOps signature operations.
|
|
func checkInputsStandard(tx *util.Tx, utxoSet blockdag.UTXOSet) error {
|
|
// NOTE: The reference implementation also does a coinbase check here,
|
|
// but coinbases have already been rejected prior to calling this
|
|
// function so no need to recheck.
|
|
|
|
for i, txIn := range tx.MsgTx().TxIn {
|
|
// It is safe to elide existence and index checks here since
|
|
// they have already been checked prior to calling this
|
|
// function.
|
|
entry, _ := utxoSet.Get(txIn.PreviousOutpoint)
|
|
originScriptPubKey := entry.ScriptPubKey()
|
|
switch txscript.GetScriptClass(originScriptPubKey) {
|
|
case txscript.ScriptHashTy:
|
|
numSigOps := txscript.GetPreciseSigOpCount(
|
|
txIn.SignatureScript, originScriptPubKey, true)
|
|
if numSigOps > maxStandardP2SHSigOps {
|
|
str := fmt.Sprintf("transaction input #%d has "+
|
|
"%d signature operations which is more "+
|
|
"than the allowed max amount of %d",
|
|
i, numSigOps, maxStandardP2SHSigOps)
|
|
return txRuleError(wire.RejectNonstandard, str)
|
|
}
|
|
|
|
case txscript.NonStandardTy:
|
|
str := fmt.Sprintf("transaction input #%d has a "+
|
|
"non-standard script form", i)
|
|
return txRuleError(wire.RejectNonstandard, str)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// isDust returns whether or not the passed transaction output amount is
|
|
// considered dust or not based on the passed minimum transaction relay fee.
|
|
// Dust is defined in terms of the minimum transaction relay fee. In
|
|
// particular, if the cost to the network to spend coins is more than 1/3 of the
|
|
// minimum transaction relay fee, it is considered dust.
|
|
func isDust(txOut *wire.TxOut, minRelayTxFee util.Amount) bool {
|
|
// Unspendable outputs are considered dust.
|
|
if txscript.IsUnspendable(txOut.ScriptPubKey) {
|
|
return true
|
|
}
|
|
|
|
// The total serialized size consists of the output and the associated
|
|
// input script to redeem it. Since there is no input script
|
|
// to redeem it yet, use the minimum size of a typical input script.
|
|
//
|
|
// Pay-to-pubkey-hash bytes breakdown:
|
|
//
|
|
// Output to hash (34 bytes):
|
|
// 8 value, 1 script len, 25 script [1 OP_DUP, 1 OP_HASH_160,
|
|
// 1 OP_DATA_20, 20 hash, 1 OP_EQUALVERIFY, 1 OP_CHECKSIG]
|
|
//
|
|
// Input with compressed pubkey (148 bytes):
|
|
// 36 prev outpoint, 1 script len, 107 script [1 OP_DATA_72, 72 sig,
|
|
// 1 OP_DATA_33, 33 compressed pubkey], 4 sequence
|
|
//
|
|
// Input with uncompressed pubkey (180 bytes):
|
|
// 36 prev outpoint, 1 script len, 139 script [1 OP_DATA_72, 72 sig,
|
|
// 1 OP_DATA_65, 65 compressed pubkey], 4 sequence
|
|
//
|
|
// Pay-to-pubkey bytes breakdown:
|
|
//
|
|
// Output to compressed pubkey (44 bytes):
|
|
// 8 value, 1 script len, 35 script [1 OP_DATA_33,
|
|
// 33 compressed pubkey, 1 OP_CHECKSIG]
|
|
//
|
|
// Output to uncompressed pubkey (76 bytes):
|
|
// 8 value, 1 script len, 67 script [1 OP_DATA_65, 65 pubkey,
|
|
// 1 OP_CHECKSIG]
|
|
//
|
|
// Input (114 bytes):
|
|
// 36 prev outpoint, 1 script len, 73 script [1 OP_DATA_72,
|
|
// 72 sig], 4 sequence
|
|
//
|
|
// Theoretically this could examine the script type of the output script
|
|
// and use a different size for the typical input script size for
|
|
// pay-to-pubkey vs pay-to-pubkey-hash inputs per the above breakdowns,
|
|
// but the only combination which is less than the value chosen is
|
|
// a pay-to-pubkey script with a compressed pubkey, which is not very
|
|
// common.
|
|
//
|
|
// The most common scripts are pay-to-pubkey-hash, and as per the above
|
|
// breakdown, the minimum size of a p2pkh input script is 148 bytes. So
|
|
// that figure is used.
|
|
totalSize := txOut.SerializeSize() + 148
|
|
|
|
// The output is considered dust if the cost to the network to spend the
|
|
// coins is more than 1/3 of the minimum free transaction relay fee.
|
|
// minFreeTxRelayFee is in sompi/KB, so multiply by 1000 to
|
|
// convert to bytes.
|
|
//
|
|
// Using the typical values for a pay-to-pubkey-hash transaction from
|
|
// the breakdown above and the default minimum free transaction relay
|
|
// fee of 1000, this equates to values less than 546 sompi being
|
|
// considered dust.
|
|
//
|
|
// The following is equivalent to (value/totalSize) * (1/3) * 1000
|
|
// without needing to do floating point math.
|
|
return txOut.Value*1000/(3*uint64(totalSize)) < uint64(minRelayTxFee)
|
|
}
|
|
|
|
// checkTransactionStandard performs a series of checks on a transaction to
|
|
// ensure it is a "standard" transaction. A standard transaction is one that
|
|
// conforms to several additional limiting cases over what is considered a
|
|
// "sane" transaction such as having a version in the supported range, being
|
|
// finalized, conforming to more stringent size constraints, having scripts
|
|
// of recognized forms, and not containing "dust" outputs (those that are
|
|
// so small it costs more to process them than they are worth).
|
|
func checkTransactionStandard(tx *util.Tx, blueScore uint64,
|
|
medianTimePast time.Time, policy *Policy) error {
|
|
|
|
// The transaction must be a currently supported version.
|
|
msgTx := tx.MsgTx()
|
|
if msgTx.Version > policy.MaxTxVersion || msgTx.Version < 1 {
|
|
str := fmt.Sprintf("transaction version %d is not in the "+
|
|
"valid range of %d-%d", msgTx.Version, 1,
|
|
policy.MaxTxVersion)
|
|
return txRuleError(wire.RejectNonstandard, str)
|
|
}
|
|
|
|
// The transaction must be finalized to be standard and therefore
|
|
// considered for inclusion in a block.
|
|
if !blockdag.IsFinalizedTransaction(tx, blueScore, medianTimePast) {
|
|
return txRuleError(wire.RejectNonstandard,
|
|
"transaction is not finalized")
|
|
}
|
|
|
|
// Since extremely large transactions with a lot of inputs can cost
|
|
// almost as much to process as the sender fees, limit the maximum
|
|
// size of a transaction. This also helps mitigate CPU exhaustion
|
|
// attacks.
|
|
serializedLen := msgTx.SerializeSize()
|
|
if serializedLen > MaxStandardTxSize {
|
|
str := fmt.Sprintf("transaction size of %d is larger than max "+
|
|
"allowed size of %d", serializedLen, MaxStandardTxSize)
|
|
return txRuleError(wire.RejectNonstandard, str)
|
|
}
|
|
|
|
for i, txIn := range msgTx.TxIn {
|
|
// Each transaction input signature script must not exceed the
|
|
// maximum size allowed for a standard transaction. See
|
|
// the comment on maxStandardSigScriptSize for more details.
|
|
sigScriptLen := len(txIn.SignatureScript)
|
|
if sigScriptLen > maxStandardSigScriptSize {
|
|
str := fmt.Sprintf("transaction input %d: signature "+
|
|
"script size of %d bytes is large than max "+
|
|
"allowed size of %d bytes", i, sigScriptLen,
|
|
maxStandardSigScriptSize)
|
|
return txRuleError(wire.RejectNonstandard, str)
|
|
}
|
|
|
|
// Each transaction input signature script must only contain
|
|
// opcodes which push data onto the stack.
|
|
isPushOnly, err := txscript.IsPushOnlyScript(txIn.SignatureScript)
|
|
if err != nil {
|
|
str := fmt.Sprintf("transaction input %d: IsPushOnlyScript: %t. Error %s", i, isPushOnly, err)
|
|
return txRuleError(wire.RejectNonstandard, str)
|
|
}
|
|
if !isPushOnly {
|
|
str := fmt.Sprintf("transaction input %d: signature "+
|
|
"script is not push only", i)
|
|
return txRuleError(wire.RejectNonstandard, str)
|
|
}
|
|
}
|
|
|
|
// None of the output public key scripts can be a non-standard script or
|
|
// be "dust".
|
|
for i, txOut := range msgTx.TxOut {
|
|
scriptClass := txscript.GetScriptClass(txOut.ScriptPubKey)
|
|
if scriptClass == txscript.NonStandardTy {
|
|
str := fmt.Sprintf("transaction output %d: non-standard script form", i)
|
|
return txRuleError(wire.RejectNonstandard, str)
|
|
}
|
|
|
|
if isDust(txOut, policy.MinRelayTxFee) {
|
|
str := fmt.Sprintf("transaction output %d: payment "+
|
|
"of %d is dust", i, txOut.Value)
|
|
return txRuleError(wire.RejectDust, str)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|