kaspad/util/math.go
stasatdaglabs e9e1ef4772
[NOD-1006] Make use of a pool to avoid excessive allocation of big.Ints (#722)
* [NOD-1006] Make CompactToBig take an out param so that we can reuse the same big.Int in averageTarget.

* [NOD-1006] Fix merge errors.

* [NOD-1006] Use CompactToBigWithDestination only in averageTarget.

* [NOD-1006] Fix refactor errors.

* [NOD-1006] Fix refactor errors.

* [NOD-1006] Optimize averageTarget with a big.Int pool.

* [NOD-1006] Defer releasing bigInts.

* [NOD-1006] Use a pool for requiredDifficulty as well.

* [NOD-1006] Move the big int pool to utils.

* [NOD-1006] Remove unnecessary line.
2020-05-19 16:29:21 +03:00

154 lines
5.4 KiB
Go

package util
import (
"math/big"
)
var (
// bigOne is 1 represented as a big.Int. It is defined here to avoid
// the overhead of creating it multiple times.
bigOne = big.NewInt(1)
// oneLsh256 is 1 shifted left 256 bits. It is defined here to avoid
// the overhead of creating it multiple times.
oneLsh256 = new(big.Int).Lsh(bigOne, 256)
// log2FloorMasks defines the masks to use when quickly calculating
// floor(log2(x)) in a constant log2(64) = 6 steps, where x is a uint64, using
// shifts. They are derived from (2^(2^x) - 1) * (2^(2^x)), for x in 5..0.
log2FloorMasks = []uint64{0xffffffff00000000, 0xffff0000, 0xff00, 0xf0, 0xc, 0x2}
)
// FastLog2Floor calculates and returns floor(log2(x)) in a constant 5 steps.
func FastLog2Floor(n uint64) uint8 {
rv := uint8(0)
exponent := uint8(32)
for i := 0; i < 6; i++ {
if n&log2FloorMasks[i] != 0 {
rv += exponent
n >>= exponent
}
exponent >>= 1
}
return rv
}
// CompactToBig converts a compact representation of a whole number N to an
// unsigned 32-bit number. The representation is similar to IEEE754 floating
// point numbers.
//
// Like IEEE754 floating point, there are three basic components: the sign,
// the exponent, and the mantissa. They are broken out as follows:
//
// * the most significant 8 bits represent the unsigned base 256 exponent
// * bit 23 (the 24th bit) represents the sign bit
// * the least significant 23 bits represent the mantissa
//
// -------------------------------------------------
// | Exponent | Sign | Mantissa |
// -------------------------------------------------
// | 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
// -------------------------------------------------
//
// The formula to calculate N is:
// N = (-1^sign) * mantissa * 256^(exponent-3)
func CompactToBig(compact uint32) *big.Int {
destination := big.NewInt(0)
CompactToBigWithDestination(compact, destination)
return destination
}
// CompactToBigWithDestination is a version of CompactToBig that
// takes a destination parameter. This is useful for saving memory,
// as then the destination big.Int can be reused.
// See CompactToBig for further details.
func CompactToBigWithDestination(compact uint32, destination *big.Int) {
// Extract the mantissa, sign bit, and exponent.
mantissa := compact & 0x007fffff
isNegative := compact&0x00800000 != 0
exponent := uint(compact >> 24)
// Since the base for the exponent is 256, the exponent can be treated
// as the number of bytes to represent the full 256-bit number. So,
// treat the exponent as the number of bytes and shift the mantissa
// right or left accordingly. This is equivalent to:
// N = mantissa * 256^(exponent-3)
if exponent <= 3 {
mantissa >>= 8 * (3 - exponent)
destination.SetInt64(int64(mantissa))
} else {
destination.SetInt64(int64(mantissa))
destination.Lsh(destination, 8*(exponent-3))
}
// Make it negative if the sign bit is set.
if isNegative {
destination.Neg(destination)
}
}
// BigToCompact converts a whole number N to a compact representation using
// an unsigned 32-bit number. The compact representation only provides 23 bits
// of precision, so values larger than (2^23 - 1) only encode the most
// significant digits of the number. See CompactToBig for details.
func BigToCompact(n *big.Int) uint32 {
// No need to do any work if it's zero.
if n.Sign() == 0 {
return 0
}
// Since the base for the exponent is 256, the exponent can be treated
// as the number of bytes. So, shift the number right or left
// accordingly. This is equivalent to:
// mantissa = mantissa / 256^(exponent-3)
var mantissa uint32
exponent := uint(len(n.Bytes()))
if exponent <= 3 {
mantissa = uint32(n.Bits()[0])
mantissa <<= 8 * (3 - exponent)
} else {
// Use a copy to avoid modifying the caller's original number.
tn := new(big.Int).Set(n)
mantissa = uint32(tn.Rsh(tn, 8*(exponent-3)).Bits()[0])
}
// When the mantissa already has the sign bit set, the number is too
// large to fit into the available 23-bits, so divide the number by 256
// and increment the exponent accordingly.
if mantissa&0x00800000 != 0 {
mantissa >>= 8
exponent++
}
// Pack the exponent, sign bit, and mantissa into an unsigned 32-bit
// int and return it.
compact := uint32(exponent<<24) | mantissa
if n.Sign() < 0 {
compact |= 0x00800000
}
return compact
}
// CalcWork calculates a work value from difficulty bits. Kaspa increases
// the difficulty for generating a block by decreasing the value which the
// generated hash must be less than. This difficulty target is stored in each
// block header using a compact representation as described in the documentation
// for CompactToBig. Since a lower target difficulty value equates to higher
// actual difficulty, the work value which will be accumulated must be the
// inverse of the difficulty. Also, in order to avoid potential division by
// zero and really small floating point numbers, the result adds 1 to the
// denominator and multiplies the numerator by 2^256.
func CalcWork(bits uint32) *big.Int {
// Return a work value of zero if the passed difficulty bits represent
// a negative number. Note this should not happen in practice with valid
// blocks, but an invalid block could trigger it.
difficultyNum := CompactToBig(bits)
if difficultyNum.Sign() <= 0 {
return big.NewInt(0)
}
// (1 << 256) / (difficultyNum + 1)
denominator := new(big.Int).Add(difficultyNum, bigOne)
return new(big.Int).Div(oneLsh256, denominator)
}