Refactor functions to take the configuration as a parameter.
This allows setting a config option for a single function call, whereas
setting `openpgp.config` could lead to concurrency-related issues when
multiple async function calls are made at the same time.
`openpgp.config` is used as default for unset config values in top-level
functions.
`openpgp.config` is used as default config object in low-level functions
(i.e., when calling a low-level function, it may be required to pass
`{ ...openpgp.config, modifiedConfig: modifiedValue }`).
Also,
- remove `config.rsaBlinding`: blinding is now always applied to RSA decryption
- remove `config.debug`: debugging mode can be enabled by setting
`process.env.NODE_ENV = 'development'`
- remove `config.useNative`: native crypto is always used when available
Change session key parameter handling to mirror key parameters.
Parameters are stored as an object rather than an array. MPIs are
always stored as Uint8Arrays.
- Store private and public params separately and by name in objects,
instead of as an array
- Do not keep params in MPI form, but convert them to Uint8Arrays when
generating/parsing the key
- Modify low-level crypto functions to always accept and return
Uint8Arrays instead of BigIntegers
- Move PKCS1 padding to lower level functions
In the lightweight build, lazily load bn.js only when necessary.
Also, use Uint8Arrays instead of strings in PKCS1 padding functions, and
check that the leading zero is present when decoding EME-PKCS1 padding.
Use `key.keyPacket.validate` instead of `crypto.publicKey.validateParams`, see
https://github.com/openpgpjs/openpgpjs/pull/1116#discussion_r447781386.
Also, `key.decrypt` now only throws on error, no other value is returned.
Also, fix typo (rebase error) that caused tests to fail in Safari for p521.
This is allowed by the spec to hide the length of the session key:
For example, assuming that an AES algorithm is
used for the session key, the sender MAY use 21, 13, and 5 bytes of
padding for AES-128, AES-192, and AES-256, respectively, to provide
the same number of octets, 40 total, as an input to the key wrapping
method.
Also, when generating RSA keys in JS, generate them with p < q, as per
the spec.
Also, when generating RSA keys using Web Crypto or Node crypto, swap the
generated p and q around, so that will satisfy p < q in most browsers
(but not old Microsoft Edge, 50% of the time) and so that we can use the
generated u coefficient (p^-1 mod q in OpenPGP, q^-1 mod p in RFC3447).
Then, when signing and verifying, swap p and q again, so that the key
hopefully satisfies Safari's requirement that p > q, and so that we can
keep using u again.
This was broken in #922 (merged as part of #956).
This would cause GPG to be unable to parse unencrypted secret keys,
thinking they were encrypted.
rfc4880bis-08 hints at this requirement, saying:
o MPI of an integer representing the secret key, which is a scalar
of the public EC point.
Since scalar multiplication happens after masking the private key,
this implies that we should serialize the private key after masking,
as well.
This PR adds four config options to configure whether and how to load
indutny/elliptic: use_indutny_elliptic, external_indutny_elliptic,
indutny_elliptic_path and indutny_elliptic_fetch_options.
Also:
- Use tweetnacl.js instead of indutny/elliptic for curve25519 key generation
- Don't initialize indutny's curve25519, improving performance when using that curve
- Verify NIST signatures using Web Crypto instead of indutny/elliptic when not streaming
- Move KeyPair.sign/verify to ecdsa.js
- Move KeyPair.derive to ecdh.js
- Move keyFromPrivate and keyFromPublic to a new indutnyKey.js file