// GPG4Browsers - An OpenPGP implementation in javascript // Copyright (C) 2011 Recurity Labs GmbH // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3.0 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA /** * @requires packet/public_key * @requires type/keyid * @requires type/s2k * @requires crypto * @requires enums * @requires util */ import publicKey from './public_key'; import type_keyid from '../type/keyid.js'; import type_s2k from '../type/s2k'; import crypto from '../crypto'; import enums from '../enums'; import util from '../util'; /** * A Secret-Key packet contains all the information that is found in a * Public-Key packet, including the public-key material, but also * includes the secret-key material after all the public-key fields. * @memberof module:packet * @constructor * @extends module:packet.PublicKey */ function SecretKey(date=new Date()) { publicKey.call(this, date); /** * Packet type * @type {module:enums.packet} */ this.tag = enums.packet.secretKey; /** * Encrypted secret-key data */ this.encrypted = null; /** * Indicator if secret-key data is encrypted. `this.isEncrypted === false` means data is available in decrypted form. */ this.isEncrypted = null; } SecretKey.prototype = new publicKey(); SecretKey.prototype.constructor = SecretKey; function get_hash_len(hash) { if (hash === 'sha1') { return 20; } return 2; } function get_hash_fn(hash) { if (hash === 'sha1') { return crypto.hash.sha1; } return function(c) { return util.writeNumber(util.calc_checksum(c), 2); }; } // Helper function function parse_cleartext_params(hash_algorithm, cleartext, algorithm) { if (hash_algorithm) { const hashlen = get_hash_len(hash_algorithm); const hashfn = get_hash_fn(hash_algorithm); const hashtext = util.Uint8Array_to_str(cleartext.subarray(cleartext.length - hashlen, cleartext.length)); cleartext = cleartext.subarray(0, cleartext.length - hashlen); const hash = util.Uint8Array_to_str(hashfn(cleartext)); if (hash !== hashtext) { throw new Error("Incorrect key passphrase"); } } const algo = enums.write(enums.publicKey, algorithm); const types = crypto.getPrivKeyParamTypes(algo); const params = crypto.constructParams(types); let p = 0; for (let i = 0; i < types.length && p < cleartext.length; i++) { p += params[i].read(cleartext.subarray(p, cleartext.length)); if (p > cleartext.length) { throw new Error('Error reading param @:' + p); } } return params; } function write_cleartext_params(hash_algorithm, algorithm, params) { const arr = []; const algo = enums.write(enums.publicKey, algorithm); const numPublicParams = crypto.getPubKeyParamTypes(algo).length; for (let i = numPublicParams; i < params.length; i++) { arr.push(params[i].write()); } const bytes = util.concatUint8Array(arr); if (hash_algorithm) { const hash = get_hash_fn(hash_algorithm)(bytes); return util.concatUint8Array([bytes, hash]); } return bytes; } // 5.5.3. Secret-Key Packet Formats /** * Internal parser for private keys as specified in * {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.5.3|RFC4880bis-04 section 5.5.3} * @param {String} bytes Input string to read the packet from */ SecretKey.prototype.read = function (bytes) { // - A Public-Key or Public-Subkey packet, as described above. const len = this.readPublicKey(bytes); bytes = bytes.subarray(len, bytes.length); // - One octet indicating string-to-key usage conventions. Zero // indicates that the secret-key data is not encrypted. 255 or 254 // indicates that a string-to-key specifier is being given. Any // other value is a symmetric-key encryption algorithm identifier. const isEncrypted = bytes[0]; if (isEncrypted) { this.encrypted = bytes; this.isEncrypted = true; } else { // - Plain or encrypted multiprecision integers comprising the secret // key data. These algorithm-specific fields are as described // below. const privParams = parse_cleartext_params('mod', bytes.subarray(1, bytes.length), this.algorithm); this.params = this.params.concat(privParams); this.isEncrypted = false; } }; /** * Creates an OpenPGP key packet for the given key. * @returns {String} A string of bytes containing the secret key OpenPGP packet */ SecretKey.prototype.write = function () { const arr = [this.writePublicKey()]; if (!this.encrypted) { arr.push(new Uint8Array([0])); arr.push(write_cleartext_params('mod', this.algorithm, this.params)); } else { arr.push(this.encrypted); } return util.concatUint8Array(arr); }; /** * Check whether secret-key data is available in decrypted form. Returns null for public keys. * @returns {Boolean|null} */ SecretKey.prototype.isDecrypted = function() { return this.isEncrypted === false; }; /** * Encrypt the payload. By default, we use aes256 and iterated, salted string * to key specifier. If the key is in a decrypted state (isEncrypted === false) * and the passphrase is empty or undefined, the key will be set as not encrypted. * This can be used to remove passphrase protection after calling decrypt(). * @param {String} passphrase * @returns {Promise} * @async */ SecretKey.prototype.encrypt = async function (passphrase) { if (this.isDecrypted() && !passphrase) { this.encrypted = null; return false; } else if (!passphrase) { throw new Error('The key must be decrypted before removing passphrase protection.'); } const s2k = new type_s2k(); s2k.salt = await crypto.random.getRandomBytes(8); const symmetric = 'aes256'; const hash = this.version === 5 ? null : 'sha1'; const cleartext = write_cleartext_params(hash, this.algorithm, this.params); const key = produceEncryptionKey(s2k, passphrase, symmetric); const blockLen = crypto.cipher[symmetric].blockSize; const iv = await crypto.random.getRandomBytes(blockLen); let arr; if (this.version === 5) { const aead = 'eax'; const optionalFields = util.concatUint8Array([new Uint8Array([enums.write(enums.symmetric, symmetric), enums.write(enums.aead, aead)]), s2k.write(), iv]); arr = [new Uint8Array([253, optionalFields.length])]; arr.push(optionalFields); const mode = crypto[aead]; const modeInstance = await mode(symmetric, key); const encrypted = await modeInstance.encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array()); arr.push(util.writeNumber(encrypted.length, 4)); arr.push(encrypted); } else { arr = [new Uint8Array([254, enums.write(enums.symmetric, symmetric)])]; arr.push(s2k.write()); arr.push(iv); arr.push(crypto.cfb.normalEncrypt(symmetric, key, cleartext, iv)); } this.encrypted = util.concatUint8Array(arr); return true; }; function produceEncryptionKey(s2k, passphrase, algorithm) { return s2k.produce_key( passphrase, crypto.cipher[algorithm].keySize ); } /** * Decrypts the private key params which are needed to use the key. * {@link module:packet.SecretKey.isDecrypted} should be false, as * otherwise calls to this function will throw an error. * @param {String} passphrase The passphrase for this private key as string * @returns {Promise} * @async */ SecretKey.prototype.decrypt = async function (passphrase) { if (this.isDecrypted()) { throw new Error('Key packet is already decrypted.'); } let i = 0; let symmetric; let aead; let key; const s2k_usage = this.encrypted[i++]; // - Only for a version 5 packet, a one-octet scalar octet count of // the next 4 optional fields. if (this.version === 5) { i++; } // - [Optional] If string-to-key usage octet was 255, 254, or 253, a // one-octet symmetric encryption algorithm. if (s2k_usage === 255 || s2k_usage === 254 || s2k_usage === 253) { symmetric = this.encrypted[i++]; symmetric = enums.read(enums.symmetric, symmetric); // - [Optional] If string-to-key usage octet was 253, a one-octet // AEAD algorithm. if (s2k_usage === 253) { aead = this.encrypted[i++]; aead = enums.read(enums.aead, aead); } // - [Optional] If string-to-key usage octet was 255, 254, or 253, a // string-to-key specifier. The length of the string-to-key // specifier is implied by its type, as described above. const s2k = new type_s2k(); i += s2k.read(this.encrypted.subarray(i, this.encrypted.length)); key = produceEncryptionKey(s2k, passphrase, symmetric); } else { symmetric = s2k_usage; symmetric = enums.read(enums.symmetric, symmetric); key = crypto.hash.md5(passphrase); } // - [Optional] If secret data is encrypted (string-to-key usage octet // not zero), an Initial Vector (IV) of the same length as the // cipher's block size. const iv = this.encrypted.subarray( i, i + crypto.cipher[symmetric].blockSize ); i += iv.length; // - Only for a version 5 packet, a four-octet scalar octet count for // the following key material. if (this.version === 5) { i += 4; } const ciphertext = this.encrypted.subarray(i, this.encrypted.length); let cleartext; if (aead) { const mode = crypto[aead]; try { const modeInstance = await mode(symmetric, key); cleartext = await modeInstance.decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array()); } catch(err) { if (err.message === 'Authentication tag mismatch') { throw new Error('Incorrect key passphrase: ' + err.message); } } } else { cleartext = crypto.cfb.normalDecrypt(symmetric, key, ciphertext, iv); } const hash = s2k_usage === 253 ? null : s2k_usage === 254 ? 'sha1' : 'mod'; const privParams = parse_cleartext_params(hash, cleartext, this.algorithm); this.params = this.params.concat(privParams); this.isEncrypted = false; this.encrypted = null; return true; }; SecretKey.prototype.generate = async function (bits, curve) { const algo = enums.write(enums.publicKey, this.algorithm); this.params = await crypto.generateParams(algo, bits, curve); this.isEncrypted = false; }; /** * Clear private params, return to initial state */ SecretKey.prototype.clearPrivateParams = function () { if (!this.encrypted) { throw new Error('If secret key is not encrypted, clearing private params is irreversible.'); } const algo = enums.write(enums.publicKey, this.algorithm); this.params = this.params.slice(0, crypto.getPubKeyParamTypes(algo).length); this.isEncrypted = true; }; /** * Fix custom types after cloning */ SecretKey.prototype.postCloneTypeFix = function() { const algo = enums.write(enums.publicKey, this.algorithm); const types = [].concat(crypto.getPubKeyParamTypes(algo), crypto.getPrivKeyParamTypes(algo)); for (let i = 0; i < this.params.length; i++) { const param = this.params[i]; this.params[i] = types[i].fromClone(param); } if (this.keyid) { this.keyid = type_keyid.fromClone(this.keyid); } }; export default SecretKey;