456 lines
14 KiB
JavaScript

// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview RSA implementation
* @module crypto/public_key/rsa
*/
import { randomProbablePrime } from './prime';
import { getRandomBigInteger } from '../random';
import util from '../../util';
import { uint8ArrayToB64, b64ToUint8Array } from '../../encoding/base64';
import { emsaEncode, emeEncode, emeDecode } from '../pkcs1';
import enums from '../../enums';
import BigInteger from '../../biginteger';
const webCrypto = util.getWebCrypto();
const nodeCrypto = util.getNodeCrypto();
/** Create signature
* @param {module:enums.hash} hashAlgo - Hash algorithm
* @param {Uint8Array} data - Message
* @param {Uint8Array} n - RSA public modulus
* @param {Uint8Array} e - RSA public exponent
* @param {Uint8Array} d - RSA private exponent
* @param {Uint8Array} p - RSA private prime p
* @param {Uint8Array} q - RSA private prime q
* @param {Uint8Array} u - RSA private coefficient
* @param {Uint8Array} hashed - Hashed message
* @returns {Promise<Uint8Array>} RSA Signature.
* @async
*/
export async function sign(hashAlgo, data, n, e, d, p, q, u, hashed) {
if (data && !util.isStream(data)) {
if (util.getWebCrypto()) {
try {
return await webSign(enums.read(enums.webHash, hashAlgo), data, n, e, d, p, q, u);
} catch (err) {
util.printDebugError(err);
}
} else if (util.getNodeCrypto()) {
return nodeSign(hashAlgo, data, n, e, d, p, q, u);
}
}
return bnSign(hashAlgo, n, d, hashed);
}
/**
* Verify signature
* @param {module:enums.hash} hashAlgo - Hash algorithm
* @param {Uint8Array} data - Message
* @param {Uint8Array} s - Signature
* @param {Uint8Array} n - RSA public modulus
* @param {Uint8Array} e - RSA public exponent
* @param {Uint8Array} hashed - Hashed message
* @returns {Boolean}
* @async
*/
export async function verify(hashAlgo, data, s, n, e, hashed) {
if (data && !util.isStream(data)) {
if (util.getWebCrypto()) {
try {
return await webVerify(enums.read(enums.webHash, hashAlgo), data, s, n, e);
} catch (err) {
util.printDebugError(err);
}
} else if (util.getNodeCrypto()) {
return nodeVerify(hashAlgo, data, s, n, e);
}
}
return bnVerify(hashAlgo, s, n, e, hashed);
}
/**
* Encrypt message
* @param {Uint8Array} data - Message
* @param {Uint8Array} n - RSA public modulus
* @param {Uint8Array} e - RSA public exponent
* @returns {Promise<Uint8Array>} RSA Ciphertext.
* @async
*/
export async function encrypt(data, n, e) {
if (util.getNodeCrypto()) {
return nodeEncrypt(data, n, e);
}
return bnEncrypt(data, n, e);
}
/**
* Decrypt RSA message
* @param {Uint8Array} m - Message
* @param {Uint8Array} n - RSA public modulus
* @param {Uint8Array} e - RSA public exponent
* @param {Uint8Array} d - RSA private exponent
* @param {Uint8Array} p - RSA private prime p
* @param {Uint8Array} q - RSA private prime q
* @param {Uint8Array} u - RSA private coefficient
* @param {Uint8Array} randomPayload - Data to return on decryption error, instead of throwing
* (needed for constant-time processing)
* @returns {Promise<String>} RSA Plaintext.
* @throws {Error} on decryption error, unless `randomPayload` is given
* @async
*/
export async function decrypt(data, n, e, d, p, q, u, randomPayload) {
// Node v18.19.1, 20.11.1 and 21.6.2 have disabled support for PKCS#1 decryption,
// and we want to avoid checking the error type to decide if the random payload
// should indeed be returned.
if (util.getNodeCrypto() && !randomPayload) {
try {
return await nodeDecrypt(data, n, e, d, p, q, u);
} catch (err) {
util.printDebugError(err);
}
}
return bnDecrypt(data, n, e, d, p, q, u, randomPayload);
}
/**
* Generate a new random private key B bits long with public exponent E.
*
* When possible, webCrypto or nodeCrypto is used. Otherwise, primes are generated using
* 40 rounds of the Miller-Rabin probabilistic random prime generation algorithm.
* @see module:crypto/public_key/prime
* @param {Integer} bits - RSA bit length
* @param {Integer} e - RSA public exponent
* @returns {{n, e, d,
* p, q ,u: Uint8Array}} RSA public modulus, RSA public exponent, RSA private exponent,
* RSA private prime p, RSA private prime q, u = p ** -1 mod q
* @async
*/
export async function generate(bits, e) {
e = new BigInteger(e);
// Native RSA keygen using Web Crypto
if (util.getWebCrypto()) {
const keyGenOpt = {
name: 'RSASSA-PKCS1-v1_5',
modulusLength: bits, // the specified keysize in bits
publicExponent: e.toUint8Array(), // take three bytes (max 65537) for exponent
hash: {
name: 'SHA-1' // not required for actual RSA keys, but for crypto api 'sign' and 'verify'
}
};
const keyPair = await webCrypto.generateKey(keyGenOpt, true, ['sign', 'verify']);
// export the generated keys as JsonWebKey (JWK)
// https://tools.ietf.org/html/draft-ietf-jose-json-web-key-33
const jwk = await webCrypto.exportKey('jwk', keyPair.privateKey);
// map JWK parameters to corresponding OpenPGP names
return jwkToPrivate(jwk, e);
} else if (util.getNodeCrypto()) {
const opts = {
modulusLength: bits,
publicExponent: e.toNumber(),
publicKeyEncoding: { type: 'pkcs1', format: 'jwk' },
privateKeyEncoding: { type: 'pkcs1', format: 'jwk' }
};
const jwk = await new Promise((resolve, reject) => {
nodeCrypto.generateKeyPair('rsa', opts, (err, _, jwkPrivateKey) => {
if (err) {
reject(err);
} else {
resolve(jwkPrivateKey);
}
});
});
return jwkToPrivate(jwk, e);
}
// RSA keygen fallback using 40 iterations of the Miller-Rabin test
// See https://stackoverflow.com/a/6330138 for justification
// Also see section C.3 here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST
let p;
let q;
let n;
do {
q = await randomProbablePrime(bits - (bits >> 1), e, 40);
p = await randomProbablePrime(bits >> 1, e, 40);
n = p.mul(q);
} while (n.bitLength() !== bits);
const phi = p.dec().imul(q.dec());
if (q.lt(p)) {
[p, q] = [q, p];
}
return {
n: n.toUint8Array(),
e: e.toUint8Array(),
d: e.modInv(phi).toUint8Array(),
p: p.toUint8Array(),
q: q.toUint8Array(),
// dp: d.mod(p.subn(1)),
// dq: d.mod(q.subn(1)),
u: p.modInv(q).toUint8Array()
};
}
/**
* Validate RSA parameters
* @param {Uint8Array} n - RSA public modulus
* @param {Uint8Array} e - RSA public exponent
* @param {Uint8Array} d - RSA private exponent
* @param {Uint8Array} p - RSA private prime p
* @param {Uint8Array} q - RSA private prime q
* @param {Uint8Array} u - RSA inverse of p w.r.t. q
* @returns {Promise<Boolean>} Whether params are valid.
* @async
*/
export async function validateParams(n, e, d, p, q, u) {
n = new BigInteger(n);
p = new BigInteger(p);
q = new BigInteger(q);
// expect pq = n
if (!p.mul(q).equal(n)) {
return false;
}
const two = new BigInteger(2);
// expect p*u = 1 mod q
u = new BigInteger(u);
if (!p.mul(u).mod(q).isOne()) {
return false;
}
e = new BigInteger(e);
d = new BigInteger(d);
/**
* In RSA pkcs#1 the exponents (d, e) are inverses modulo lcm(p-1, q-1)
* We check that [de = 1 mod (p-1)] and [de = 1 mod (q-1)]
* By CRT on coprime factors of (p-1, q-1) it follows that [de = 1 mod lcm(p-1, q-1)]
*
* We blind the multiplication with r, and check that rde = r mod lcm(p-1, q-1)
*/
const nSizeOver3 = new BigInteger(Math.floor(n.bitLength() / 3));
const r = await getRandomBigInteger(two, two.leftShift(nSizeOver3)); // r in [ 2, 2^{|n|/3} ) < p and q
const rde = r.mul(d).mul(e);
const areInverses = rde.mod(p.dec()).equal(r) && rde.mod(q.dec()).equal(r);
if (!areInverses) {
return false;
}
return true;
}
async function bnSign(hashAlgo, n, d, hashed) {
n = new BigInteger(n);
const m = new BigInteger(await emsaEncode(hashAlgo, hashed, n.byteLength()));
d = new BigInteger(d);
if (m.gte(n)) {
throw new Error('Message size cannot exceed modulus size');
}
return m.modExp(d, n).toUint8Array('be', n.byteLength());
}
async function webSign(hashName, data, n, e, d, p, q, u) {
/** OpenPGP keys require that p < q, and Safari Web Crypto requires that p > q.
* We swap them in privateToJWK, so it usually works out, but nevertheless,
* not all OpenPGP keys are compatible with this requirement.
* OpenPGP.js used to generate RSA keys the wrong way around (p > q), and still
* does if the underlying Web Crypto does so (though the tested implementations
* don't do so).
*/
const jwk = await privateToJWK(n, e, d, p, q, u);
const algo = {
name: 'RSASSA-PKCS1-v1_5',
hash: { name: hashName }
};
const key = await webCrypto.importKey('jwk', jwk, algo, false, ['sign']);
return new Uint8Array(await webCrypto.sign('RSASSA-PKCS1-v1_5', key, data));
}
async function nodeSign(hashAlgo, data, n, e, d, p, q, u) {
const sign = nodeCrypto.createSign(enums.read(enums.hash, hashAlgo));
sign.write(data);
sign.end();
const jwk = await privateToJWK(n, e, d, p, q, u);
return new Uint8Array(sign.sign({ key: jwk, format: 'jwk', type: 'pkcs1' }));
}
async function bnVerify(hashAlgo, s, n, e, hashed) {
n = new BigInteger(n);
s = new BigInteger(s);
e = new BigInteger(e);
if (s.gte(n)) {
throw new Error('Signature size cannot exceed modulus size');
}
const EM1 = s.modExp(e, n).toUint8Array('be', n.byteLength());
const EM2 = await emsaEncode(hashAlgo, hashed, n.byteLength());
return util.equalsUint8Array(EM1, EM2);
}
async function webVerify(hashName, data, s, n, e) {
const jwk = publicToJWK(n, e);
const key = await webCrypto.importKey('jwk', jwk, {
name: 'RSASSA-PKCS1-v1_5',
hash: { name: hashName }
}, false, ['verify']);
return webCrypto.verify('RSASSA-PKCS1-v1_5', key, s, data);
}
async function nodeVerify(hashAlgo, data, s, n, e) {
const jwk = publicToJWK(n, e);
const key = { key: jwk, format: 'jwk', type: 'pkcs1' };
const verify = nodeCrypto.createVerify(enums.read(enums.hash, hashAlgo));
verify.write(data);
verify.end();
try {
return verify.verify(key, s);
} catch (err) {
return false;
}
}
async function nodeEncrypt(data, n, e) {
const jwk = publicToJWK(n, e);
const key = { key: jwk, format: 'jwk', type: 'pkcs1', padding: nodeCrypto.constants.RSA_PKCS1_PADDING };
return new Uint8Array(nodeCrypto.publicEncrypt(key, data));
}
async function bnEncrypt(data, n, e) {
n = new BigInteger(n);
data = new BigInteger(emeEncode(data, n.byteLength()));
e = new BigInteger(e);
if (data.gte(n)) {
throw new Error('Message size cannot exceed modulus size');
}
return data.modExp(e, n).toUint8Array('be', n.byteLength());
}
async function nodeDecrypt(data, n, e, d, p, q, u) {
const jwk = await privateToJWK(n, e, d, p, q, u);
const key = { key: jwk, format: 'jwk' , type: 'pkcs1', padding: nodeCrypto.constants.RSA_PKCS1_PADDING };
try {
return new Uint8Array(nodeCrypto.privateDecrypt(key, data));
} catch (err) {
throw new Error('Decryption error');
}
}
async function bnDecrypt(data, n, e, d, p, q, u, randomPayload) {
data = new BigInteger(data);
n = new BigInteger(n);
e = new BigInteger(e);
d = new BigInteger(d);
p = new BigInteger(p);
q = new BigInteger(q);
u = new BigInteger(u);
if (data.gte(n)) {
throw new Error('Data too large.');
}
const dq = d.mod(q.dec()); // d mod (q-1)
const dp = d.mod(p.dec()); // d mod (p-1)
const unblinder = (await getRandomBigInteger(new BigInteger(2), n)).mod(n);
const blinder = unblinder.modInv(n).modExp(e, n);
data = data.mul(blinder).mod(n);
const mp = data.modExp(dp, p); // data**{d mod (q-1)} mod p
const mq = data.modExp(dq, q); // data**{d mod (p-1)} mod q
const h = u.mul(mq.sub(mp)).mod(q); // u * (mq-mp) mod q (operands already < q)
let result = h.mul(p).add(mp); // result < n due to relations above
result = result.mul(unblinder).mod(n);
return emeDecode(result.toUint8Array('be', n.byteLength()), randomPayload);
}
/** Convert Openpgp private key params to jwk key according to
* @link https://tools.ietf.org/html/rfc7517
* @param {String} hashAlgo
* @param {Uint8Array} n
* @param {Uint8Array} e
* @param {Uint8Array} d
* @param {Uint8Array} p
* @param {Uint8Array} q
* @param {Uint8Array} u
*/
async function privateToJWK(n, e, d, p, q, u) {
const pNum = new BigInteger(p);
const qNum = new BigInteger(q);
const dNum = new BigInteger(d);
let dq = dNum.mod(qNum.dec()); // d mod (q-1)
let dp = dNum.mod(pNum.dec()); // d mod (p-1)
dp = dp.toUint8Array();
dq = dq.toUint8Array();
return {
kty: 'RSA',
n: uint8ArrayToB64(n, true),
e: uint8ArrayToB64(e, true),
d: uint8ArrayToB64(d, true),
// switch p and q
p: uint8ArrayToB64(q, true),
q: uint8ArrayToB64(p, true),
// switch dp and dq
dp: uint8ArrayToB64(dq, true),
dq: uint8ArrayToB64(dp, true),
qi: uint8ArrayToB64(u, true),
ext: true
};
}
/** Convert Openpgp key public params to jwk key according to
* @link https://tools.ietf.org/html/rfc7517
* @param {String} hashAlgo
* @param {Uint8Array} n
* @param {Uint8Array} e
*/
function publicToJWK(n, e) {
return {
kty: 'RSA',
n: uint8ArrayToB64(n, true),
e: uint8ArrayToB64(e, true),
ext: true
};
}
/** Convert JWK private key to OpenPGP private key params */
function jwkToPrivate(jwk, e) {
return {
n: b64ToUint8Array(jwk.n),
e: e.toUint8Array(),
d: b64ToUint8Array(jwk.d),
// switch p and q
p: b64ToUint8Array(jwk.q),
q: b64ToUint8Array(jwk.p),
// Since p and q are switched in places, u is the inverse of jwk.q
u: b64ToUint8Array(jwk.qi)
};
}