Daniel Kahn Gillmor 4da28fcc29 move from http to https where possible.
There are dozens of links in the OpenPGP.js codebase that are http but
could be replaced with https links.  I've converted as many of them as
i could find.
2018-02-01 09:58:06 -05:00

319 lines
11 KiB
JavaScript

// Modified by ProtonTech AG
// Modified by Recurity Labs GmbH
// modified version of https://www.hanewin.net/encrypt/PGdecode.js:
/* OpenPGP encryption using RSA/AES
* Copyright 2005-2006 Herbert Hanewinkel, www.haneWIN.de
* version 2.0, check www.haneWIN.de for the latest version
* This software is provided as-is, without express or implied warranty.
* Permission to use, copy, modify, distribute or sell this software, with or
* without fee, for any purpose and by any individual or organization, is hereby
* granted, provided that the above copyright notice and this paragraph appear
* in all copies. Distribution as a part of an application or binary must
* include the above copyright notice in the documentation and/or other
* materials provided with the application or distribution.
*/
/**
* @requires crypto/cipher
* @module crypto/cfb
*/
'use strict';
import cipher from './cipher';
export default {
/**
* This function encrypts a given with the specified prefixrandom
* using the specified blockcipher to encrypt a message
* @param {Uint8Array} prefixrandom random bytes of block_size length
* to be used in prefixing the data
* @param {String} cipherfn the algorithm cipher class to encrypt
* data in one block_size encryption, {@link module:crypto/cipher}.
* @param {Uint8Array} plaintext data to be encrypted
* @param {Uint8Array} key key to be used to encrypt the plaintext.
* This will be passed to the cipherfn
* @param {Boolean} resync a boolean value specifying if a resync of the
* IV should be used or not. The encrypteddatapacket uses the
* "old" style with a resync. Encryption within an
* encryptedintegrityprotecteddata packet is not resyncing the IV.
* @return {Uint8Array} encrypted data
*/
encrypt: function(prefixrandom, cipherfn, plaintext, key, resync) {
cipherfn = new cipher[cipherfn](key);
var block_size = cipherfn.blockSize;
var FR = new Uint8Array(block_size);
var FRE = new Uint8Array(block_size);
var new_prefix = new Uint8Array(prefixrandom.length + 2);
new_prefix.set(prefixrandom);
new_prefix[prefixrandom.length] = prefixrandom[block_size-2];
new_prefix[prefixrandom.length+1] = prefixrandom[block_size-1];
prefixrandom = new_prefix;
var ciphertext = new Uint8Array(plaintext.length + 2 + block_size * 2);
var i, n, begin;
var offset = resync ? 0 : 2;
// 1. The feedback register (FR) is set to the IV, which is all zeros.
for (i = 0; i < block_size; i++) {
FR[i] = 0;
}
// 2. FR is encrypted to produce FRE (FR Encrypted). This is the
// encryption of an all-zero value.
FRE = cipherfn.encrypt(FR);
// 3. FRE is xored with the first BS octets of random data prefixed to
// the plaintext to produce C[1] through C[BS], the first BS octets
// of ciphertext.
for (i = 0; i < block_size; i++) {
ciphertext[i] = FRE[i] ^ prefixrandom[i];
}
// 4. FR is loaded with C[1] through C[BS].
FR.set(ciphertext.subarray(0, block_size));
// 5. FR is encrypted to produce FRE, the encryption of the first BS
// octets of ciphertext.
FRE = cipherfn.encrypt(FR);
// 6. The left two octets of FRE get xored with the next two octets of
// data that were prefixed to the plaintext. This produces C[BS+1]
// and C[BS+2], the next two octets of ciphertext.
ciphertext[block_size] = FRE[0] ^ prefixrandom[block_size];
ciphertext[block_size + 1] = FRE[1] ^ prefixrandom[block_size + 1];
if (resync) {
// 7. (The resync step) FR is loaded with C[3] through C[BS+2].
FR.set(ciphertext.subarray(2, block_size + 2));
} else {
FR.set(ciphertext.subarray(0, block_size));
}
// 8. FR is encrypted to produce FRE.
FRE = cipherfn.encrypt(FR);
// 9. FRE is xored with the first BS octets of the given plaintext, now
// that we have finished encrypting the BS+2 octets of prefixed
// data. This produces C[BS+3] through C[BS+(BS+2)], the next BS
// octets of ciphertext.
for (i = 0; i < block_size; i++) {
ciphertext[block_size + 2 + i] = FRE[i + offset] ^ plaintext[i];
}
for (n = block_size; n < plaintext.length + offset; n += block_size) {
// 10. FR is loaded with C[BS+3] to C[BS + (BS+2)] (which is C11-C18 for
// an 8-octet block).
begin = n + 2 - offset;
FR.set(ciphertext.subarray(begin, begin + block_size));
// 11. FR is encrypted to produce FRE.
FRE = cipherfn.encrypt(FR);
// 12. FRE is xored with the next BS octets of plaintext, to produce
// the next BS octets of ciphertext. These are loaded into FR, and
// the process is repeated until the plaintext is used up.
for (i = 0; i < block_size; i++) {
ciphertext[block_size + begin + i] = FRE[i] ^ plaintext[n + i - offset];
}
}
ciphertext = ciphertext.subarray(0, plaintext.length + 2 + block_size);
return ciphertext;
},
/**
* Decrypts the prefixed data for the Modification Detection Code (MDC) computation
* @param {String} cipherfn.encrypt Cipher function to use,
* @see module:crypto/cipher.
* @param {Uint8Array} key Uint8Array representation of key to be used to check the mdc
* This will be passed to the cipherfn
* @param {Uint8Array} ciphertext The encrypted data
* @return {Uint8Array} plaintext Data of D(ciphertext) with blocksize length +2
*/
mdc: function(cipherfn, key, ciphertext) {
cipherfn = new cipher[cipherfn](key);
var block_size = cipherfn.blockSize;
var iblock = new Uint8Array(block_size);
var ablock = new Uint8Array(block_size);
var i;
// initialisation vector
for (i = 0; i < block_size; i++) {
iblock[i] = 0;
}
iblock = cipherfn.encrypt(iblock);
for (i = 0; i < block_size; i++) {
ablock[i] = ciphertext[i];
iblock[i] ^= ablock[i];
}
ablock = cipherfn.encrypt(ablock);
var result = new Uint8Array(iblock.length + 2);
result.set(iblock);
result[iblock.length] = ablock[0] ^ ciphertext[block_size];
result[iblock.length + 1] = ablock[1] ^ ciphertext[block_size + 1];
return result;
},
/**
* This function decrypts a given plaintext using the specified
* blockcipher to decrypt a message
* @param {String} cipherfn the algorithm cipher class to decrypt
* data in one block_size encryption, {@link module:crypto/cipher}.
* @param {Uint8Array} key Uint8Array representation of key to be used to decrypt the ciphertext.
* This will be passed to the cipherfn
* @param {Uint8Array} ciphertext to be decrypted
* @param {Boolean} resync a boolean value specifying if a resync of the
* IV should be used or not. The encrypteddatapacket uses the
* "old" style with a resync. Decryption within an
* encryptedintegrityprotecteddata packet is not resyncing the IV.
* @return {Uint8Array} the plaintext data
*/
decrypt: function(cipherfn, key, ciphertext, resync) {
cipherfn = new cipher[cipherfn](key);
var block_size = cipherfn.blockSize;
var iblock = new Uint8Array(block_size);
var ablock = new Uint8Array(block_size);
var i, j, n;
var text = new Uint8Array(ciphertext.length - block_size);
// initialisation vector
for (i = 0; i < block_size; i++) {
iblock[i] = 0;
}
iblock = cipherfn.encrypt(iblock);
for (i = 0; i < block_size; i++) {
ablock[i] = ciphertext[i];
iblock[i] ^= ablock[i];
}
ablock = cipherfn.encrypt(ablock);
// test check octets
if (iblock[block_size - 2] !== (ablock[0] ^ ciphertext[block_size]) ||
iblock[block_size - 1] !== (ablock[1] ^ ciphertext[block_size + 1])) {
throw new Error('CFB decrypt: invalid key');
}
/* RFC4880: Tag 18 and Resync:
* [...] Unlike the Symmetrically Encrypted Data Packet, no
* special CFB resynchronization is done after encrypting this prefix
* data. See "OpenPGP CFB Mode" below for more details.
*/
j = 0;
if (resync) {
for (i = 0; i < block_size; i++) {
iblock[i] = ciphertext[i + 2];
}
for (n = block_size + 2; n < ciphertext.length; n += block_size) {
ablock = cipherfn.encrypt(iblock);
for (i = 0; i < block_size && i + n < ciphertext.length; i++) {
iblock[i] = ciphertext[n + i];
if(j < text.length) {
text[j] = ablock[i] ^ iblock[i];
j++;
}
}
}
} else {
for (i = 0; i < block_size; i++) {
iblock[i] = ciphertext[i];
}
for (n = block_size; n < ciphertext.length; n += block_size) {
ablock = cipherfn.encrypt(iblock);
for (i = 0; i < block_size && i + n < ciphertext.length; i++) {
iblock[i] = ciphertext[n + i];
if(j < text.length) {
text[j] = ablock[i] ^ iblock[i];
j++;
}
}
}
}
n = resync ? 0 : 2;
text = text.subarray(n, ciphertext.length - block_size - 2 + n);
return text;
},
normalEncrypt: function(cipherfn, key, plaintext, iv) {
cipherfn = new cipher[cipherfn](key);
var block_size = cipherfn.blockSize;
var blocki = new Uint8Array(block_size);
var blockc = new Uint8Array(block_size);
var pos = 0;
var cyphertext = new Uint8Array(plaintext.length);
var i, j = 0;
if (iv === null) {
for (i = 0; i < block_size; i++) {
blockc[i] = 0;
}
}
else {
for (i = 0; i < block_size; i++) {
blockc[i] = iv[i];
}
}
while (plaintext.length > block_size * pos) {
var encblock = cipherfn.encrypt(blockc);
blocki = plaintext.subarray((pos * block_size), (pos * block_size) + block_size);
for (i = 0; i < blocki.length; i++) {
blockc[i] = blocki[i] ^ encblock[i];
cyphertext[j++] = blockc[i];
}
pos++;
}
return cyphertext;
},
normalDecrypt: function(cipherfn, key, ciphertext, iv) {
cipherfn = new cipher[cipherfn](key);
var block_size = cipherfn.blockSize;
var blockp;
var pos = 0;
var plaintext = new Uint8Array(ciphertext.length);
var offset = 0;
var i, j = 0;
if (iv === null) {
blockp = new Uint8Array(block_size);
for (i = 0; i < block_size; i++) {
blockp[i] = 0;
}
}
else {
blockp = iv.subarray(0, block_size);
}
while (ciphertext.length > (block_size * pos)) {
var decblock = cipherfn.encrypt(blockp);
blockp = ciphertext.subarray((pos * (block_size)) + offset, (pos * (block_size)) + (block_size) + offset);
for (i = 0; i < blockp.length; i++) {
plaintext[j++] = blockp[i] ^ decblock[i];
}
pos++;
}
return plaintext;
}
};