openpgpjs/src/packet/public_key_encrypted_session_key.js
Daniel Huigens 7e382e6e43 Add support for PKESK v6
Also, set version in PKESK constructor to null,
requiring to explicitly set all fields.

Co-authored-by: Lukas Burkhalter <lukas.burkhalter@proton.ch>
2023-10-25 12:53:12 +02:00

256 lines
9.9 KiB
JavaScript

// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
import KeyID from '../type/keyid';
import crypto from '../crypto';
import enums from '../enums';
import util from '../util';
import { UnsupportedError } from './packet';
/**
* Public-Key Encrypted Session Key Packets (Tag 1)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.1|RFC4880 5.1}:
* A Public-Key Encrypted Session Key packet holds the session key
* used to encrypt a message. Zero or more Public-Key Encrypted Session Key
* packets and/or Symmetric-Key Encrypted Session Key packets may precede a
* Symmetrically Encrypted Data Packet, which holds an encrypted message. The
* message is encrypted with the session key, and the session key is itself
* encrypted and stored in the Encrypted Session Key packet(s). The
* Symmetrically Encrypted Data Packet is preceded by one Public-Key Encrypted
* Session Key packet for each OpenPGP key to which the message is encrypted.
* The recipient of the message finds a session key that is encrypted to their
* public key, decrypts the session key, and then uses the session key to
* decrypt the message.
*/
class PublicKeyEncryptedSessionKeyPacket {
static get tag() {
return enums.packet.publicKeyEncryptedSessionKey;
}
constructor() {
this.version = null;
// For version 3:
this.publicKeyID = new KeyID();
// For version 6:
this.publicKeyVersion = null;
this.publicKeyFingerprint = null;
// For all versions:
this.publicKeyAlgorithm = null;
this.sessionKey = null;
/**
* Algorithm to encrypt the message with
* @type {enums.symmetric}
*/
this.sessionKeyAlgorithm = null;
/** @type {Object} */
this.encrypted = {};
}
/**
* Parsing function for a publickey encrypted session key packet (tag 1).
*
* @param {Uint8Array} bytes - Payload of a tag 1 packet
*/
read(bytes) {
let offset = 0;
this.version = bytes[offset++];
if (this.version !== 3 && this.version !== 6) {
throw new UnsupportedError(`Version ${this.version} of the PKESK packet is unsupported.`);
}
if (this.version === 6) {
// A one-octet size of the following two fields:
// - A one octet key version number.
// - The fingerprint of the public key or subkey to which the session key is encrypted.
// The size may also be zero.
const versionAndFingerprintLength = bytes[offset++];
if (versionAndFingerprintLength) {
this.publicKeyVersion = bytes[offset++];
const fingerprintLength = versionAndFingerprintLength - 1;
this.publicKeyFingerprint = bytes.subarray(offset, offset + fingerprintLength); offset += fingerprintLength;
if (this.publicKeyVersion >= 5) {
// For v5/6 the Key ID is the high-order 64 bits of the fingerprint.
this.publicKeyID.read(this.publicKeyFingerprint);
} else {
// For v4 The Key ID is the low-order 64 bits of the fingerprint.
this.publicKeyID.read(this.publicKeyFingerprint.subarray(-8));
}
} else {
// The size may also be zero, and the key version and
// fingerprint omitted for an "anonymous recipient"
this.publicKeyID = KeyID.wildcard();
}
} else {
offset += this.publicKeyID.read(bytes.subarray(offset, offset + 8));
}
this.publicKeyAlgorithm = bytes[offset++];
this.encrypted = crypto.parseEncSessionKeyParams(this.publicKeyAlgorithm, bytes.subarray(offset));
if (this.version === 3 && this.publicKeyAlgorithm === enums.publicKey.x25519) {
this.sessionKeyAlgorithm = enums.write(enums.symmetric, this.encrypted.C.algorithm);
}
}
/**
* Create a binary representation of a tag 1 packet
*
* @returns {Uint8Array} The Uint8Array representation.
*/
write() {
const arr = [
new Uint8Array([this.version])
];
if (this.version === 6) {
if (this.publicKeyFingerprint !== null) {
arr.push(new Uint8Array([
this.publicKeyFingerprint.length + 1,
this.publicKeyVersion]
));
arr.push(this.publicKeyFingerprint);
} else {
arr.push(new Uint8Array([0]));
}
} else {
arr.push(this.publicKeyID.write());
}
arr.push(
new Uint8Array([this.publicKeyAlgorithm]),
crypto.serializeParams(this.publicKeyAlgorithm, this.encrypted)
);
return util.concatUint8Array(arr);
}
/**
* Encrypt session key packet
* @param {PublicKeyPacket} key - Public key
* @throws {Error} if encryption failed
* @async
*/
async encrypt(key) {
const algo = enums.write(enums.publicKey, this.publicKeyAlgorithm);
const encoded = encodeSessionKey(this.version, algo, this.sessionKeyAlgorithm, this.sessionKey);
this.encrypted = await crypto.publicKeyEncrypt(
algo, this.sessionKeyAlgorithm, key.publicParams, encoded, key.getFingerprintBytes());
}
/**
* Decrypts the session key (only for public key encrypted session key packets (tag 1)
* @param {SecretKeyPacket} key - decrypted private key
* @param {Object} [randomSessionKey] - Bogus session key to use in case of sensitive decryption error, or if the decrypted session key is of a different type/size.
* This is needed for constant-time processing. Expected object of the form: { sessionKey: Uint8Array, sessionKeyAlgorithm: enums.symmetric }
* @throws {Error} if decryption failed, unless `randomSessionKey` is given
* @async
*/
async decrypt(key, randomSessionKey) {
// check that session key algo matches the secret key algo
if (this.publicKeyAlgorithm !== key.algorithm) {
throw new Error('Decryption error');
}
const randomPayload = randomSessionKey ?
encodeSessionKey(this.version, this.publicKeyAlgorithm, randomSessionKey.sessionKeyAlgorithm, randomSessionKey.sessionKey) :
null;
const decryptedData = await crypto.publicKeyDecrypt(this.publicKeyAlgorithm, key.publicParams, key.privateParams, this.encrypted, key.getFingerprintBytes(), randomPayload);
const { sessionKey, sessionKeyAlgorithm } = decodeSessionKey(this.version, this.publicKeyAlgorithm, decryptedData, randomSessionKey);
// v3 Montgomery curves have cleartext cipher algo
if (this.version === 3 && this.publicKeyAlgorithm !== enums.publicKey.x25519) {
this.sessionKeyAlgorithm = sessionKeyAlgorithm;
}
this.sessionKey = sessionKey;
}
}
export default PublicKeyEncryptedSessionKeyPacket;
function encodeSessionKey(version, keyAlgo, cipherAlgo, sessionKeyData) {
switch (keyAlgo) {
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.elgamal:
case enums.publicKey.ecdh: {
// add checksum
return util.concatUint8Array([
new Uint8Array(version === 6 ? [] : [cipherAlgo]),
sessionKeyData,
util.writeChecksum(sessionKeyData.subarray(sessionKeyData.length % 8))
]);
}
case enums.publicKey.x25519:
return sessionKeyData;
default:
throw new Error('Unsupported public key algorithm');
}
}
function decodeSessionKey(version, keyAlgo, decryptedData, randomSessionKey) {
switch (keyAlgo) {
case enums.publicKey.rsaEncrypt:
case enums.publicKey.rsaEncryptSign:
case enums.publicKey.elgamal:
case enums.publicKey.ecdh: {
// verify checksum in constant time
const result = decryptedData.subarray(0, decryptedData.length - 2);
const checksum = decryptedData.subarray(decryptedData.length - 2);
const computedChecksum = util.writeChecksum(result.subarray(result.length % 8));
const isValidChecksum = computedChecksum[0] === checksum[0] & computedChecksum[1] === checksum[1];
const decryptedSessionKey = version === 6 ?
{ sessionKeyAlgorithm: null, sessionKey: result } :
{ sessionKeyAlgorithm: result[0], sessionKey: result.subarray(1) };
if (randomSessionKey) {
// We must not leak info about the validity of the decrypted checksum or cipher algo.
// The decrypted session key must be of the same algo and size as the random session key, otherwise we discard it and use the random data.
const isValidPayload = isValidChecksum &
decryptedSessionKey.sessionKeyAlgorithm === randomSessionKey.sessionKeyAlgorithm &
decryptedSessionKey.sessionKey.length === randomSessionKey.sessionKey.length;
return {
sessionKey: util.selectUint8Array(isValidPayload, decryptedSessionKey.sessionKey, randomSessionKey.sessionKey),
sessionKeyAlgorithm: version === 6 ? null : util.selectUint8(
isValidPayload,
decryptedSessionKey.sessionKeyAlgorithm,
randomSessionKey.sessionKeyAlgorithm
)
};
} else {
const isValidPayload = isValidChecksum && (
version === 6 || enums.read(enums.symmetric, decryptedSessionKey.sessionKeyAlgorithm));
if (isValidPayload) {
return decryptedSessionKey;
} else {
throw new Error('Decryption error');
}
}
}
case enums.publicKey.x25519:
return {
sessionKey: decryptedData
};
default:
throw new Error('Unsupported public key algorithm');
}
}