openpgpjs/src/crypto/biginteger.ts

217 lines
5.1 KiB
TypeScript

// Operations are not constant time, but we try and limit timing leakage where we can
const _0n = BigInt(0);
const _1n = BigInt(1);
export function uint8ArrayToBigInt(bytes: Uint8Array) {
const hexAlphabet = '0123456789ABCDEF';
let s = '';
bytes.forEach(v => {
s += hexAlphabet[v >> 4] + hexAlphabet[v & 15];
});
return BigInt('0x0' + s);
}
export function mod(a: bigint, m: bigint) {
const reduced = a % m;
return reduced < _0n ? reduced + m : reduced;
}
/**
* Compute modular exponentiation using square and multiply
* @param {BigInt} a - Base
* @param {BigInt} e - Exponent
* @param {BigInt} n - Modulo
* @returns {BigInt} b ** e mod n.
*/
export function modExp(b: bigint, e: bigint, n: bigint) {
if (n === _0n) throw Error('Modulo cannot be zero');
if (n === _1n) return BigInt(0);
if (e < _0n) throw Error('Unsopported negative exponent');
let exp = e;
let x = b;
x %= n;
let r = BigInt(1);
while (exp > _0n) {
const lsb = exp & _1n;
exp >>= _1n; // e / 2
// Always compute multiplication step, to reduce timing leakage
const rx = (r * x) % n;
// Update r only if lsb is 1 (odd exponent)
r = lsb ? rx : r;
x = (x * x) % n; // Square
}
return r;
}
function abs(x: bigint) {
return x >= _0n ? x : -x;
}
/**
* Extended Eucleadian algorithm (http://anh.cs.luc.edu/331/notes/xgcd.pdf)
* Given a and b, compute (x, y) such that ax + by = gdc(a, b).
* Negative numbers are also supported.
* @param {BigInt} a - First operand
* @param {BigInt} b - Second operand
* @returns {{ gcd, x, y: bigint }}
*/
function _egcd(aInput: bigint, bInput: bigint) {
let x = BigInt(0);
let y = BigInt(1);
let xPrev = BigInt(1);
let yPrev = BigInt(0);
// Deal with negative numbers: run algo over absolute values,
// and "move" the sign to the returned x and/or y.
// See https://math.stackexchange.com/questions/37806/extended-euclidean-algorithm-with-negative-numbers
let a = abs(aInput);
let b = abs(bInput);
const aNegated = aInput < _0n;
const bNegated = bInput < _0n;
while (b !== _0n) {
const q = a / b;
let tmp = x;
x = xPrev - q * x;
xPrev = tmp;
tmp = y;
y = yPrev - q * y;
yPrev = tmp;
tmp = b;
b = a % b;
a = tmp;
}
return {
x: aNegated ? -xPrev : xPrev,
y: bNegated ? -yPrev : yPrev,
gcd: a
};
}
/**
* Compute the inverse of `a` modulo `n`
* Note: `a` and and `n` must be relatively prime
* @param {BigInt} a
* @param {BigInt} n - Modulo
* @returns {BigInt} x such that a*x = 1 mod n
* @throws {Error} if the inverse does not exist
*/
export function modInv(a: bigint, n: bigint) {
const { gcd, x } = _egcd(a, n);
if (gcd !== _1n) {
throw new Error('Inverse does not exist');
}
return mod(x + n, n);
}
/**
* Compute greatest common divisor between this and n
* @param {BigInt} aInput - Operand
* @param {BigInt} bInput - Operand
* @returns {BigInt} gcd
*/
export function gcd(aInput: bigint, bInput: bigint) {
let a = aInput;
let b = bInput;
while (b !== _0n) {
const tmp = b;
b = a % b;
a = tmp;
}
return a;
}
/**
* Get this value as an exact Number (max 53 bits)
* Fails if this value is too large
* @returns {Number}
*/
export function bigIntToNumber(x: bigint) {
const number = Number(x);
if (number > Number.MAX_SAFE_INTEGER) {
// We throw and error to conform with the bn.js implementation
throw new Error('Number can only safely store up to 53 bits');
}
return number;
}
/**
* Get value of i-th bit
* @param {BigInt} x
* @param {Number} i - Bit index
* @returns {Number} Bit value.
*/
export function getBit(x:bigint, i: number) {
const bit = (x >> BigInt(i)) & _1n;
return bit === _0n ? 0 : 1;
}
/**
* Compute bit length
*/
export function bitLength(x: bigint) {
// -1n >> -1n is -1n
// 1n >> 1n is 0n
const target = x < _0n ? BigInt(-1) : _0n;
let bitlen = 1;
let tmp = x;
// eslint-disable-next-line no-cond-assign
while ((tmp >>= _1n) !== target) {
bitlen++;
}
return bitlen;
}
/**
* Compute byte length
*/
export function byteLength(x: bigint) {
const target = x < _0n ? BigInt(-1) : _0n;
const _8n = BigInt(8);
let len = 1;
let tmp = x;
// eslint-disable-next-line no-cond-assign
while ((tmp >>= _8n) !== target) {
len++;
}
return len;
}
/**
* Get Uint8Array representation of this number
* @param {String} endian - Endianess of output array (defaults to 'be')
* @param {Number} length - Of output array
* @returns {Uint8Array}
*/
export function bigIntToUint8Array(x: bigint, endian = 'be', length: number) {
// we get and parse the hex string (https://coolaj86.com/articles/convert-js-bigints-to-typedarrays/)
// this is faster than shift+mod iterations
let hex = x.toString(16);
if (hex.length % 2 === 1) {
hex = '0' + hex;
}
const rawLength = hex.length / 2;
const bytes = new Uint8Array(length || rawLength);
// parse hex
const offset = length ? length - rawLength : 0;
let i = 0;
while (i < rawLength) {
bytes[i + offset] = parseInt(hex.slice(2 * i, 2 * i + 2), 16);
i++;
}
if (endian !== 'be') {
bytes.reverse();
}
return bytes;
}