openpgpjs/src/packet/one_pass_signature.js

205 lines
8.1 KiB
JavaScript

// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
import { fromAsync as streamFromAsync } from '@openpgp/web-stream-tools';
import SignaturePacket from './signature';
import KeyID from '../type/keyid';
import enums from '../enums';
import util from '../util';
import { UnsupportedError } from './packet';
/**
* Implementation of the One-Pass Signature Packets (Tag 4)
*
* {@link https://tools.ietf.org/html/rfc4880#section-5.4|RFC4880 5.4}:
* The One-Pass Signature packet precedes the signed data and contains
* enough information to allow the receiver to begin calculating any
* hashes needed to verify the signature. It allows the Signature
* packet to be placed at the end of the message, so that the signer
* can compute the entire signed message in one pass.
*/
class OnePassSignaturePacket {
static get tag() {
return enums.packet.onePassSignature;
}
static fromSignaturePacket(signaturePacket, isLast) {
const onePassSig = new OnePassSignaturePacket();
onePassSig.version = signaturePacket.version === 6 ? 6 : 3;
onePassSig.signatureType = signaturePacket.signatureType;
onePassSig.hashAlgorithm = signaturePacket.hashAlgorithm;
onePassSig.publicKeyAlgorithm = signaturePacket.publicKeyAlgorithm;
onePassSig.issuerKeyID = signaturePacket.issuerKeyID;
onePassSig.salt = signaturePacket.salt; // v6 only
onePassSig.issuerFingerprint = signaturePacket.issuerFingerprint; // v6 only
onePassSig.flags = isLast ? 1 : 0;
return onePassSig;
}
constructor() {
/** A one-octet version number. The current versions are 3 and 6. */
this.version = null;
/**
* A one-octet signature type.
* Signature types are described in
* {@link https://tools.ietf.org/html/rfc4880#section-5.2.1|RFC4880 Section 5.2.1}.
* @type {enums.signature}
*/
this.signatureType = null;
/**
* A one-octet number describing the hash algorithm used.
* @see {@link https://tools.ietf.org/html/rfc4880#section-9.4|RFC4880 9.4}
* @type {enums.hash}
*/
this.hashAlgorithm = null;
/**
* A one-octet number describing the public-key algorithm used.
* @see {@link https://tools.ietf.org/html/rfc4880#section-9.1|RFC4880 9.1}
* @type {enums.publicKey}
*/
this.publicKeyAlgorithm = null;
/** Only for v6, a variable-length field containing the salt. */
this.salt = null;
/** Only for v3 packets, an eight-octet number holding the Key ID of the signing key. */
this.issuerKeyID = null;
/** Only for v6 packets, 32 octets of the fingerprint of the signing key. */
this.issuerFingerprint = null;
/**
* A one-octet number holding a flag showing whether the signature is nested.
* A zero value indicates that the next packet is another One-Pass Signature packet
* that describes another signature to be applied to the same message data.
*/
this.flags = null;
}
/**
* parsing function for a one-pass signature packet (tag 4).
* @param {Uint8Array} bytes - Payload of a tag 4 packet
* @returns {OnePassSignaturePacket} Object representation.
*/
read(bytes) {
let mypos = 0;
// A one-octet version number. The current versions are 3 or 6.
this.version = bytes[mypos++];
if (this.version !== 3 && this.version !== 6) {
throw new UnsupportedError(`Version ${this.version} of the one-pass signature packet is unsupported.`);
}
// A one-octet signature type. Signature types are described in
// Section 5.2.1.
this.signatureType = bytes[mypos++];
// A one-octet number describing the hash algorithm used.
this.hashAlgorithm = bytes[mypos++];
// A one-octet number describing the public-key algorithm used.
this.publicKeyAlgorithm = bytes[mypos++];
if (this.version === 6) {
// Only for v6 signatures, a variable-length field containing:
// A one-octet salt size. The value MUST match the value defined
// for the hash algorithm as specified in Table 23 (Hash algorithm registry).
// To allow parsing unknown hash algos, we only check the expected salt length when verifying.
const saltLength = bytes[mypos++];
// The salt; a random value value of the specified size.
this.salt = bytes.subarray(mypos, mypos + saltLength);
mypos += saltLength;
// Only for v6 packets, 32 octets of the fingerprint of the signing key.
this.issuerFingerprint = bytes.subarray(mypos, mypos + 32);
mypos += 32;
this.issuerKeyID = new KeyID();
// For v6 the Key ID is the high-order 64 bits of the fingerprint.
this.issuerKeyID.read(this.issuerFingerprint);
} else {
// Only for v3 packets, an eight-octet number holding the Key ID of the signing key.
this.issuerKeyID = new KeyID();
this.issuerKeyID.read(bytes.subarray(mypos, mypos + 8));
mypos += 8;
}
// A one-octet number holding a flag showing whether the signature
// is nested. A zero value indicates that the next packet is
// another One-Pass Signature packet that describes another
// signature to be applied to the same message data.
this.flags = bytes[mypos++];
return this;
}
/**
* creates a string representation of a one-pass signature packet
* @returns {Uint8Array} A Uint8Array representation of a one-pass signature packet.
*/
write() {
const arr = [new Uint8Array([
this.version,
this.signatureType,
this.hashAlgorithm,
this.publicKeyAlgorithm
])];
if (this.version === 6) {
arr.push(
new Uint8Array([this.salt.length]),
this.salt,
this.issuerFingerprint
);
} else {
arr.push(this.issuerKeyID.write());
}
arr.push(new Uint8Array([this.flags]));
return util.concatUint8Array(arr);
}
calculateTrailer(...args) {
return streamFromAsync(async () => SignaturePacket.prototype.calculateTrailer.apply(await this.correspondingSig, args));
}
async verify() {
const correspondingSig = await this.correspondingSig;
if (!correspondingSig || correspondingSig.constructor.tag !== enums.packet.signature) {
throw new Error('Corresponding signature packet missing');
}
if (
correspondingSig.signatureType !== this.signatureType ||
correspondingSig.hashAlgorithm !== this.hashAlgorithm ||
correspondingSig.publicKeyAlgorithm !== this.publicKeyAlgorithm ||
!correspondingSig.issuerKeyID.equals(this.issuerKeyID) ||
(this.version === 3 && correspondingSig.version === 6) ||
(this.version === 6 && correspondingSig.version !== 6) ||
(this.version === 6 && !util.equalsUint8Array(correspondingSig.issuerFingerprint, this.issuerFingerprint)) ||
(this.version === 6 && !util.equalsUint8Array(correspondingSig.salt, this.salt))
) {
throw new Error('Corresponding signature packet does not match one-pass signature packet');
}
correspondingSig.hashed = this.hashed;
return correspondingSig.verify.apply(correspondingSig, arguments);
}
}
// eslint-disable-next-line @typescript-eslint/unbound-method
OnePassSignaturePacket.prototype.hash = SignaturePacket.prototype.hash;
// eslint-disable-next-line @typescript-eslint/unbound-method
OnePassSignaturePacket.prototype.toHash = SignaturePacket.prototype.toHash;
// eslint-disable-next-line @typescript-eslint/unbound-method
OnePassSignaturePacket.prototype.toSign = SignaturePacket.prototype.toSign;
export default OnePassSignaturePacket;