Merged Pathfinding code cleanup from Hercules

(https://github.com/HerculesWS/Hercules/commit/78028c8)
* This fixes a problem where units sometimes walk diagonally through a wall server-sided; there should be less client desync now (but it might not be perfect yet)
* I kept the rAthena specific option path_blown_halt
* Special thanks to piotrhalaczkiewicz for the original implementation and aleos for helping me with the merge
This commit is contained in:
Playtester 2014-09-29 21:14:58 +02:00
parent 82561947e3
commit b64ef9258d
5 changed files with 269 additions and 261 deletions

View File

@ -1369,7 +1369,7 @@ int mob_randomwalk(struct mob_data *md,unsigned int tick)
speed=status_get_speed(&md->bl);
for(i=c=0;i<md->ud.walkpath.path_len;i++){ // The next walk start time is calculated.
if(md->ud.walkpath.path[i]&1)
c+=speed*14/10;
c+=speed*MOVE_DIAGONAL_COST/MOVE_COST;
else
c+=speed;
}

View File

@ -2,10 +2,11 @@
// For more information, see LICENCE in the main folder
#include "../common/cbasetypes.h"
#include "../common/db.h"
#include "../common/malloc.h"
#include "../common/nullpo.h"
#include "../common/random.h"
#include "../common/showmsg.h"
#include "../common/malloc.h"
#include "map.h"
#include "battle.h"
#include "path.h"
@ -14,137 +15,48 @@
#include <stdlib.h>
#include <string.h>
#define SET_OPEN 0
#define SET_CLOSED 1
#define MAX_HEAP 150
#define DIR_NORTH 1
#define DIR_WEST 2
#define DIR_SOUTH 4
#define DIR_EAST 8
/// @name Structures and defines for A* pathfinding
/// @{
/// Path node
struct path_node {
struct path_node *parent; ///< pointer to parent (for path reconstruction)
short x; ///< X-coordinate
short y; ///< Y-coordinate
short g_cost; ///< Actual cost from start to this node
short f_cost; ///< g_cost + heuristic(this, goal)
short flag; ///< SET_OPEN / SET_CLOSED
};
/// Binary heap of path nodes
BHEAP_STRUCT_DECL(node_heap, struct path_node*);
/// Comparator for binary heap of path nodes (minimum cost at top)
#define NODE_MINTOPCMP(i,j) ((i)->f_cost - (j)->f_cost)
struct tmp_path { short x,y,dist,before,cost,flag;};
#define calc_index(x,y) (((x)+(y)*MAX_WALKPATH) & (MAX_WALKPATH*MAX_WALKPATH-1))
const char walk_choices [3][3] =
/// Estimates the cost from (x0,y0) to (x1,y1).
/// This is inadmissible (overestimating) heuristic used by game client.
#define heuristic(x0, y0, x1, y1) (MOVE_COST * (abs((x1) - (x0)) + abs((y1) - (y0)))) // Manhattan distance
/// @}
// Translates dx,dy into walking direction
static const unsigned char walk_choices [3][3] =
{
{1,0,7},
{2,-1,6},
{3,4,5},
};
/*==========================================
* heap push (helper function)
*------------------------------------------*/
static void push_heap_path(int *heap,struct tmp_path *tp,int index)
{
int i,h;
h = heap[0];
heap[0]++;
for( i = (h-1)/2; h > 0 && tp[index].cost < tp[heap[i+1]].cost; i = (h-1)/2 )
heap[h+1] = heap[i+1], h = i;
heap[h+1] = index;
}
/*==========================================
* heap update (helper function)
* Move toward the root because cost has decreased.
*------------------------------------------*/
static void update_heap_path(int *heap,struct tmp_path *tp,int index)
{
int i,h;
ARR_FIND( 0, heap[0], h, heap[h+1] == index );
if( h == heap[0] )
{
ShowError("update_heap_path bug\n");
exit(EXIT_FAILURE);
}
for( i = (h-1)/2; h > 0 && tp[index].cost < tp[heap[i+1]].cost; i = (h-1)/2 )
heap[h+1] = heap[i+1], h = i;
heap[h+1] = index;
}
/*==========================================
* heap pop (helper function)
*------------------------------------------*/
static int pop_heap_path(int *heap,struct tmp_path *tp)
{
int i,h,k;
int ret,last;
if( heap[0] <= 0 )
return -1;
ret = heap[1];
last = heap[heap[0]];
heap[0]--;
for( h = 0, k = 2; k < heap[0]; k = k*2+2 )
{
if( tp[heap[k+1]].cost > tp[heap[k]].cost )
k--;
heap[h+1] = heap[k+1], h = k;
}
if( k == heap[0] )
heap[h+1] = heap[k], h = k-1;
for( i = (h-1)/2; h > 0 && tp[heap[i+1]].cost > tp[last].cost; i = (h-1)/2 )
heap[h+1] = heap[i+1], h = i;
heap[h+1]=last;
return ret;
}
/*==========================================
* calculate cost for the specified position
*------------------------------------------*/
static int calc_cost(struct tmp_path *p,int16 x1,int16 y1)
{
int xd = abs(x1 - p->x);
int yd = abs(y1 - p->y);
return (xd + yd)*10 + p->dist;
}
/*==========================================
* attach/adjust path if neccessary
*------------------------------------------*/
static int add_path(int *heap,struct tmp_path *tp,int16 x,int16 y,int dist,int before,int cost)
{
int i;
i = calc_index(x,y);
if( tp[i].x == x && tp[i].y == y )
{
if( tp[i].dist > dist )
{
tp[i].dist = dist;
tp[i].before = before;
tp[i].cost = cost;
if( tp[i].flag )
push_heap_path(heap,tp,i);
else
update_heap_path(heap,tp,i);
tp[i].flag = 0;
}
return 0;
}
if( tp[i].x || tp[i].y )
return 1;
tp[i].x = x;
tp[i].y = y;
tp[i].dist = dist;
tp[i].before = before;
tp[i].cost = cost;
tp[i].flag = 0;
push_heap_path(heap,tp,i);
return 0;
}
/*==========================================
* Find the closest reachable cell, 'count' cells away from (x0,y0) in direction (dx,dy).
* Income after the coordinates of the blow
@ -269,160 +181,248 @@ bool path_search_long(struct shootpath_data *spd,int16 m,int16 x0,int16 y0,int16
return true;
}
/// @name A* pathfinding related functions
/// @{
/// Pushes path_node to the binary node_heap.
/// Ensures there is enough space in array to store new element.
static void heap_push_node(struct node_heap *heap, struct path_node *node)
{
#ifndef __clang_analyzer__ // TODO: Figure out why clang's static analyzer doesn't like this
BHEAP_ENSURE(*heap, 1, 256);
BHEAP_PUSH(*heap, node, NODE_MINTOPCMP, swap_ptr);
#endif // __clang_analyzer__
}
/// Updates path_node in the binary node_heap.
static int heap_update_node(struct node_heap *heap, struct path_node *node)
{
int i;
ARR_FIND(0, BHEAP_LENGTH(*heap), i, BHEAP_DATA(*heap)[i] == node);
if (i == BHEAP_LENGTH(*heap)) {
ShowError("heap_update_node: node not found\n");
return 1;
}
BHEAP_POPINDEX(*heap, i, NODE_MINTOPCMP, swap_ptr);
BHEAP_PUSH(*heap, node, NODE_MINTOPCMP, swap_ptr);
return 0;
}
/// Path_node processing in A* pathfinding.
/// Adds new node to heap and updates/re-adds old ones if necessary.
static int add_path(struct node_heap *heap, struct path_node *tp, int16 x, int16 y, int g_cost, struct path_node *parent, int h_cost)
{
int i = calc_index(x, y);
if (tp[i].x == x && tp[i].y == y) { // We processed this node before
if (g_cost < tp[i].g_cost) { // New path to this node is better than old one
// Update costs and parent
tp[i].g_cost = g_cost;
tp[i].parent = parent;
tp[i].f_cost = g_cost + h_cost;
if (tp[i].flag == SET_CLOSED) {
heap_push_node(heap, &tp[i]); // Put it in open set again
}
else if (heap_update_node(heap, &tp[i])) {
return 1;
}
tp[i].flag = SET_OPEN;
}
return 0;
}
if (tp[i].x || tp[i].y) // Index is already taken; see `tp` array FIXME for details
return 1;
// New node
tp[i].x = x;
tp[i].y = y;
tp[i].g_cost = g_cost;
tp[i].parent = parent;
tp[i].f_cost = g_cost + h_cost;
tp[i].flag = SET_OPEN;
heap_push_node(heap, &tp[i]);
return 0;
}
///@}
/*==========================================
* path search (x0,y0)->(x1,y1)
* wpd: path info will be written here
* flag: &1 = easy path search only
* cell: type of obstruction to check for
*------------------------------------------*/
bool path_search(struct walkpath_data *wpd,int16 m,int16 x0,int16 y0,int16 x1,int16 y1,int flag,cell_chk cell)
bool path_search(struct walkpath_data *wpd, int16 m, int16 x0, int16 y0, int16 x1, int16 y1, int flag, cell_chk cell)
{
int heap[MAX_HEAP+1];
struct tmp_path tp[MAX_WALKPATH*MAX_WALKPATH];
register int i,j,len,x,y,dx=0,dy=0;
int rp,xs,ys;
register int i, j, x, y, dx = 0, dy = 0;
struct map_data *md;
struct walkpath_data s_wpd;
if( wpd == NULL )
if (wpd == NULL)
wpd = &s_wpd; // use dummy output variable
if( !map[m].cell )
if (!map[m].cell)
return false;
md = &map[m];
#ifdef CELL_NOSTACK
//Do not check starting cell as that would get you stuck.
if( x0 < 0 || x0 >= md->xs || y0 < 0 || y0 >= md->ys )
if (x0 < 0 || x0 >= md->xs || y0 < 0 || y0 >= md->ys)
#else
if( x0 < 0 || x0 >= md->xs || y0 < 0 || y0 >= md->ys /*|| map_getcellp(md,x0,y0,cell)*/ )
if (x0 < 0 || x0 >= md->xs || y0 < 0 || y0 >= md->ys /*|| map_getcellp(md,x0,y0,cell)*/)
#endif
return false;
if( x1 < 0 || x1 >= md->xs || y1 < 0 || y1 >= md->ys || map_getcellp(md,x1,y1,cell) )
// Check destination cell
if (x1 < 0 || x1 >= md->xs || y1 < 0 || y1 >= md->ys || map_getcellp(md,x1,y1,cell))
return false;
// calculate (sgn(x1-x0), sgn(y1-y0))
dx = ((dx = x1-x0)) ? ((dx<0) ? -1 : 1) : 0;
dy = ((dy = y1-y0)) ? ((dy<0) ? -1 : 1) : 0;
if (flag&1) {
// Try finding direct path to target
// Direct path goes diagonally first, then in straight line.
// try finding direct path to target
x = x0;
y = y0;
i = 0;
while( i < ARRAYLENGTH(wpd->path) )
{
wpd->path[i] = walk_choices[-dy + 1][dx + 1];
i++;
// calculate (sgn(x1-x0), sgn(y1-y0))
dx = ((dx = x1-x0)) ? ((dx<0) ? -1 : 1) : 0;
dy = ((dy = y1-y0)) ? ((dy<0) ? -1 : 1) : 0;
x += dx;
y += dy;
x = x0; // Current position = starting cell
y = y0;
i = 0;
while( i < ARRAYLENGTH(wpd->path) )
{
wpd->path[i] = walk_choices[-dy + 1][dx + 1];
i++;
if( x == x1 ) dx = 0;
if( y == y1 ) dy = 0;
x += dx; // Advance current position
y += dy;
if( dx == 0 && dy == 0 )
break; // success
if( map_getcellp(md,x,y,cell) )
break; // obstacle = failure
if( x == x1 ) dx = 0; // destination x reached, no longer move along x-axis
if( y == y1 ) dy = 0; // destination y reached, no longer move along y-axis
if( dx == 0 && dy == 0 )
break; // success
if( map_getcellp(md,x,y,cell) )
break; // obstacle = failure
}
if( x == x1 && y == y1 )
{ // easy path successful.
wpd->path_len = i;
wpd->path_pos = 0;
return true;
}
return false; // easy path unsuccessful
}
else { // !(flag&1)
// A* (A-star) pathfinding
// We always use A* for finding walkpaths because it is what game client uses.
// Easy pathfinding cuts corners of non-walkable cells, but client always walks around it.
if( x == x1 && y == y1 )
{ //easy path successful.
wpd->path_len = i;
BHEAP_STRUCT_VAR(node_heap, open_set); // 'Open' set
// FIXME: This array is too small to ensure all paths shorter than MAX_WALKPATH
// can be found without node collision: calc_index(node1) = calc_index(node2).
// Figure out more proper size or another way to keep track of known nodes.
struct path_node tp[MAX_WALKPATH * MAX_WALKPATH];
struct path_node *current, *it;
int xs = md->xs - 1;
int ys = md->ys - 1;
int len = 0;
memset(tp, 0, sizeof(tp));
// Start node
i = calc_index(x0, y0);
tp[i].parent = NULL;
tp[i].x = x0;
tp[i].y = y0;
tp[i].g_cost = 0;
tp[i].f_cost = heuristic(x0, y0, x1, y1);
tp[i].flag = SET_OPEN;
heap_push_node(&open_set, &tp[i]); // Put start node to 'open' set
for(;;)
{
int e = 0; // error flag
// Saves allowed directions for the current cell. Diagonal directions
// are only allowed if both directions around it are allowed. This is
// to prevent cutting corner of nearby wall.
// For example, you can only go NW from the current cell, if you can
// go N *and* you can go W. Otherwise you need to walk around the
// (corner of the) non-walkable cell.
int allowed_dirs = 0;
int g_cost;
if (BHEAP_LENGTH(open_set) == 0) {
BHEAP_CLEAR(open_set);
return false;
}
current = BHEAP_PEEK(open_set); // Look for the lowest f_cost node in the 'open' set
BHEAP_POP(open_set, NODE_MINTOPCMP, swap_ptr); // Remove it from 'open' set
x = current->x;
y = current->y;
g_cost = current->g_cost;
current->flag = SET_CLOSED; // Add current node to 'closed' set
if (x == x1 && y == y1) {
BHEAP_CLEAR(open_set);
break;
}
if (y < ys && !map_getcellp(md, x, y+1, cell)) allowed_dirs |= DIR_NORTH;
if (y > 0 && !map_getcellp(md, x, y-1, cell)) allowed_dirs |= DIR_SOUTH;
if (x < xs && !map_getcellp(md, x+1, y, cell)) allowed_dirs |= DIR_EAST;
if (x > 0 && !map_getcellp(md, x-1, y, cell)) allowed_dirs |= DIR_WEST;
#define chk_dir(d) ((allowed_dirs & (d)) == (d))
// Process neighbors of current node
// TODO: Processing order affects chosen path if there is more than one path with same cost.
// In few cases path found by server will be different than path found by game client.
if (chk_dir(DIR_SOUTH))
e += add_path(&open_set, tp, x, y-1, g_cost + MOVE_COST, current, heuristic(x, y-1, x1, y1)); // (x, y-1) 4
if (chk_dir(DIR_SOUTH|DIR_WEST) && !map_getcellp(md, x-1, y-1, cell))
e += add_path(&open_set, tp, x-1, y-1, g_cost + MOVE_DIAGONAL_COST, current, heuristic(x-1, y-1, x1, y1)); // (x-1, y-1) 3
if (chk_dir(DIR_WEST))
e += add_path(&open_set, tp, x-1, y, g_cost + MOVE_COST, current, heuristic(x-1, y, x1, y1)); // (x-1, y) 2
if (chk_dir(DIR_NORTH|DIR_WEST) && !map_getcellp(md, x-1, y+1, cell))
e += add_path(&open_set, tp, x-1, y+1, g_cost + MOVE_DIAGONAL_COST, current, heuristic(x-1, y+1, x1, y1)); // (x-1, y+1) 1
if (chk_dir(DIR_NORTH))
e += add_path(&open_set, tp, x, y+1, g_cost + MOVE_COST, current, heuristic(x, y+1, x1, y1)); // (x, y+1) 0
if (chk_dir(DIR_NORTH|DIR_EAST) && !map_getcellp(md, x+1, y+1, cell))
e += add_path(&open_set, tp, x+1, y+1, g_cost + MOVE_DIAGONAL_COST, current, heuristic(x+1, y+1, x1, y1)); // (x+1, y+1) 7
if (chk_dir(DIR_EAST))
e += add_path(&open_set, tp, x+1, y, g_cost + MOVE_COST, current, heuristic(x+1, y, x1, y1)); // (x+1, y) 6
if (chk_dir(DIR_SOUTH|DIR_EAST) && !map_getcellp(md, x+1, y-1, cell))
e += add_path(&open_set, tp, x+1, y-1, g_cost + MOVE_DIAGONAL_COST, current, heuristic(x+1, y-1, x1, y1)); // (x+1, y-1) 5
#undef chk_dir
if (e) {
BHEAP_CLEAR(open_set);
return false;
}
}
for (it = current; it->parent != NULL; it = it->parent, len++);
if (len > sizeof(wpd->path)) {
return false;
}
// Recreate path
wpd->path_len = len;
wpd->path_pos = 0;
for (it = current, j = len-1; j >= 0; it = it->parent, j--) {
dx = it->x - it->parent->x;
dy = it->y - it->parent->y;
wpd->path[j] = walk_choices[-dy + 1][dx + 1];
}
return true;
}
} // A* end
if( flag&1 )
return false;
memset(tp,0,sizeof(tp));
i=calc_index(x0,y0);
tp[i].x=x0;
tp[i].y=y0;
tp[i].dist=0;
tp[i].before=0;
tp[i].cost=calc_cost(&tp[i],x1,y1);
tp[i].flag=0;
heap[0]=0;
push_heap_path(heap,tp,calc_index(x0,y0));
xs = md->xs - 1; // Place by subtracting a pre-
ys = md->ys-1;
for(;;)
{
int e=0,f=0,dist,cost,dc[4]={0,0,0,0};
if(heap[0]==0)
return false;
rp = pop_heap_path(heap,tp);
x = tp[rp].x;
y = tp[rp].y;
dist = tp[rp].dist + 10;
cost = tp[rp].cost;
if(x==x1 && y==y1)
break;
// dc[0] : y++ Incremental cost at the time
// dc[1] : x--
// dc[2] : y--
// dc[3] : x++
if(y < ys && !map_getcellp(md,x ,y+1,cell)) {
f |= 1; dc[0] = (y >= y1 ? 20 : 0);
e+=add_path(heap,tp,x ,y+1,dist,rp,cost+dc[0]); // (x, y+1)
}
if(x > 0 && !map_getcellp(md,x-1,y ,cell)) {
f |= 2; dc[1] = (x <= x1 ? 20 : 0);
e+=add_path(heap,tp,x-1,y ,dist,rp,cost+dc[1]); // (x-1, y )
}
if(y > 0 && !map_getcellp(md,x ,y-1,cell)) {
f |= 4; dc[2] = (y <= y1 ? 20 : 0);
e+=add_path(heap,tp,x ,y-1,dist,rp,cost+dc[2]); // (x , y-1)
}
if(x < xs && !map_getcellp(md,x+1,y ,cell)) {
f |= 8; dc[3] = (x >= x1 ? 20 : 0);
e+=add_path(heap,tp,x+1,y ,dist,rp,cost+dc[3]); // (x+1, y )
}
if( (f & (2+1)) == (2+1) && !map_getcellp(md,x-1,y+1,cell))
e+=add_path(heap,tp,x-1,y+1,dist+4,rp,cost+dc[1]+dc[0]-6); // (x-1, y+1)
if( (f & (2+4)) == (2+4) && !map_getcellp(md,x-1,y-1,cell))
e+=add_path(heap,tp,x-1,y-1,dist+4,rp,cost+dc[1]+dc[2]-6); // (x-1, y-1)
if( (f & (8+4)) == (8+4) && !map_getcellp(md,x+1,y-1,cell))
e+=add_path(heap,tp,x+1,y-1,dist+4,rp,cost+dc[3]+dc[2]-6); // (x+1, y-1)
if( (f & (8+1)) == (8+1) && !map_getcellp(md,x+1,y+1,cell))
e+=add_path(heap,tp,x+1,y+1,dist+4,rp,cost+dc[3]+dc[0]-6); // (x+1, y+1)
tp[rp].flag=1;
if(e || heap[0]>=MAX_HEAP-5)
return false;
}
if( !(x==x1 && y==y1) ) // will never happen...
return false;
for(len=0,i=rp;len<100 && i!=calc_index(x0,y0);i=tp[i].before,len++);
if(len==100 || len>=sizeof(wpd->path))
return false;
wpd->path_len = len;
wpd->path_pos = 0;
for(i=rp,j=len-1;j>=0;i=tp[i].before,j--) {
int dx2 = tp[i].x - tp[tp[i].before].x;
int dy2 = tp[i].y - tp[tp[i].before].y;
uint8 dir;
if( dx2 == 0 ) {
dir = (dy2 > 0 ? 0 : 4);
} else if( dx2 > 0 ) {
dir = (dy2 == 0 ? 6 : (dy2 < 0 ? 5 : 7) );
} else {
dir = (dy2 == 0 ? 2 : (dy2 > 0 ? 1 : 3) );
}
wpd->path[j] = dir;
}
return true;
return false;
}
@ -446,7 +446,7 @@ unsigned int distance(int dx, int dy)
if ( dx < 0 ) dx = -dx;
if ( dy < 0 ) dy = -dy;
//There appears to be something wrong with the aproximation below when either dx/dy is 0! [Skotlex]
//There appears to be something wrong with the approximation below when either dx/dy is 0! [Skotlex]
if ( dx == 0 ) return dy;
if ( dy == 0 ) return dx;

View File

@ -6,6 +6,9 @@
#include "map.h" // enum cell_chk
#define MOVE_COST 10
#define MOVE_DIAGONAL_COST 14
#define MAX_WALKPATH 32
struct walkpath_data {
@ -19,6 +22,16 @@ struct shootpath_data {
int y[MAX_WALKPATH];
};
struct path_interface *path;
#define check_distance_bl(bl1, bl2, distance) check_distance((bl1)->x - (bl2)->x, (bl1)->y - (bl2)->y, distance)
#define check_distance_blxy(bl, x1, y1, distance) check_distance((bl)->x-(x1), (bl)->y-(y1), distance)
#define check_distance_xy(x0, y0, x1, y1, distance) check_distance((x0)-(x1), (y0)-(y1), distance)
#define distance_bl(bl1, bl2) distance((bl1)->x - (bl2)->x, (bl1)->y - (bl2)->y)
#define distance_blxy(bl, x1, y1) distance((bl)->x-(x1), (bl)->y-(y1))
#define distance_xy(x0, y0, x1, y1) distance((x0)-(x1), (y0)-(y1))
// calculates destination cell for knockback
int path_blownpos(int16 m,int16 x0,int16 y0,int16 dx,int16 dy,int count);
@ -28,16 +41,8 @@ bool path_search(struct walkpath_data *wpd,int16 m,int16 x0,int16 y0,int16 x1,in
// tries to find a shootable path
bool path_search_long(struct shootpath_data *spd,int16 m,int16 x0,int16 y0,int16 x1,int16 y1,cell_chk cell);
// distance related functions
int check_distance(int dx, int dy, int distance);
#define check_distance_bl(bl1, bl2, distance) check_distance((bl1)->x - (bl2)->x, (bl1)->y - (bl2)->y, distance)
#define check_distance_blxy(bl, x1, y1, distance) check_distance((bl)->x-(x1), (bl)->y-(y1), distance)
#define check_distance_xy(x0, y0, x1, y1, distance) check_distance((x0)-(x1), (y0)-(y1), distance)
unsigned int distance(int dx, int dy);
#define distance_bl(bl1, bl2) distance((bl1)->x - (bl2)->x, (bl1)->y - (bl2)->y)
#define distance_blxy(bl, x1, y1) distance((bl)->x-(x1), (bl)->y-(y1))
#define distance_xy(x0, y0, x1, y1) distance((x0)-(x1), (y0)-(y1))
#endif /* _PATH_H_ */

View File

@ -834,7 +834,7 @@ static int pet_randomwalk(struct pet_data *pd,unsigned int tick)
}
for(i = c = 0; i < pd->ud.walkpath.path_len; i++) {
if(pd->ud.walkpath.path[i]&1)
c += pd->status.speed*14/10;
c += pd->status.speed*MOVE_DIAGONAL_COST/MOVE_COST;
else
c += pd->status.speed;
}

View File

@ -104,9 +104,9 @@ int unit_walktoxy_sub(struct block_list *bl)
ud->walkpath.path_len--;
dir = ud->walkpath.path[ud->walkpath.path_len];
if(dir&1)
i-=14;
i -= MOVE_DIAGONAL_COST;
else
i-=10;
i -= MOVE_COST;
ud->to_x -= dirx[dir];
ud->to_y -= diry[dir];
}
@ -123,7 +123,7 @@ int unit_walktoxy_sub(struct block_list *bl)
if(ud->walkpath.path_pos>=ud->walkpath.path_len)
i = -1;
else if(ud->walkpath.path[ud->walkpath.path_pos]&1)
i = status_get_speed(bl)*14/10;
i = status_get_speed(bl)*MOVE_DIAGONAL_COST/MOVE_COST;
else
i = status_get_speed(bl);
if( i > 0)
@ -467,14 +467,17 @@ int unit_walktoxy( struct block_list *bl, short x, short y, unsigned char flag)
if (bl->type == BL_PC)
sd = BL_CAST(BL_PC, bl);
path_search(&wpd, bl->m, bl->x, bl->y, x, y, flag&1, CELL_CHKNOPASS); // Count walk path cells
if (!path_search(&wpd, bl->m, bl->x, bl->y, x, y, flag&1, CELL_CHKNOPASS)) // Count walk path cells
return 0;
#ifdef OFFICIAL_WALKPATH
if( !path_search_long(NULL, bl->m, bl->x, bl->y, x, y, CELL_CHKNOPASS) // Check if there is an obstacle between
&& wpd.path_len > 14 // Official number of walkable cells is 14 if and only if there is an obstacle between. [malufett]
&& (bl->type != BL_NPC) ) // If type is a NPC, please disregard.
return 0;
#endif
if( (battle_config.max_walk_path < wpd.path_len) && (bl->type != BL_NPC) )
if ((wpd.path_len > battle_config.max_walk_path) && (bl->type != BL_NPC))
return 0;
if (flag&4){