rathena/src/common/timer.cpp
2019-03-18 00:02:25 +01:00

535 lines
14 KiB
C++

// Copyright (c) rAthena Dev Teams - Licensed under GNU GPL
// For more information, see LICENCE in the main folder
#include "timer.hpp"
#include <stdlib.h>
#include <string.h>
#ifdef WIN32
#include "winapi.hpp" // GetTickCount()
#else
#endif
#include "cbasetypes.hpp"
#include "db.hpp"
#include "malloc.hpp"
#include "nullpo.hpp"
#include "showmsg.hpp"
#include "utils.hpp"
// If the server can't handle processing thousands of monsters
// or many connected clients, please increase TIMER_MIN_INTERVAL.
// The official interval of 20ms is however strongly recommended,
// as it is needed for perfect server-client syncing.
const t_tick TIMER_MIN_INTERVAL = 20;
const t_tick TIMER_MAX_INTERVAL = 1000;
// timers (array)
static struct TimerData* timer_data = NULL;
static int timer_data_max = 0;
static int timer_data_num = 0;
// free timers (array)
static int* free_timer_list = NULL;
static int free_timer_list_max = 0;
static int free_timer_list_pos = 0;
/// Comparator for the timer heap. (minimum tick at top)
/// Returns negative if tid1's tick is smaller, positive if tid2's tick is smaller, 0 if equal.
///
/// @param tid1 First timer
/// @param tid2 Second timer
/// @return negative if tid1 is top, positive if tid2 is top, 0 if equal
#define DIFFTICK_MINTOPCMP(tid1,tid2) DIFF_TICK(timer_data[tid1].tick,timer_data[tid2].tick)
// timer heap (binary heap of tid's)
static BHEAP_VAR(int, timer_heap);
// server startup time
time_t start_time;
/*----------------------------
* Timer debugging
*----------------------------*/
struct timer_func_list {
struct timer_func_list* next;
TimerFunc func;
char* name;
} *tfl_root = NULL;
/// Sets the name of a timer function.
int add_timer_func_list(TimerFunc func, const char* name)
{
struct timer_func_list* tfl;
if (name) {
for( tfl=tfl_root; tfl != NULL; tfl=tfl->next )
{// check suspicious cases
if( func == tfl->func )
ShowWarning("add_timer_func_list: duplicating function %p(%s) as %s.\n",tfl->func,tfl->name,name);
else if( strcmp(name,tfl->name) == 0 )
ShowWarning("add_timer_func_list: function %p has the same name as %p(%s)\n",func,tfl->func,tfl->name);
}
CREATE(tfl,struct timer_func_list,1);
tfl->next = tfl_root;
tfl->func = func;
tfl->name = aStrdup(name);
tfl_root = tfl;
}
return 0;
}
/// Returns the name of the timer function.
const char* search_timer_func_list(TimerFunc func)
{
struct timer_func_list* tfl;
for( tfl=tfl_root; tfl != NULL; tfl=tfl->next )
if (func == tfl->func)
return tfl->name;
return "unknown timer function";
}
/*----------------------------
* Get tick time
*----------------------------*/
#if defined(ENABLE_RDTSC)
static uint64 RDTSC_BEGINTICK = 0, RDTSC_CLOCK = 0;
static __inline uint64 _rdtsc(){
register union{
uint64 qw;
uint32 dw[2];
} t;
asm volatile("rdtsc":"=a"(t.dw[0]), "=d"(t.dw[1]) );
return t.qw;
}
static void rdtsc_calibrate(){
uint64 t1, t2;
int32 i;
ShowStatus("Calibrating Timer Source, please wait... ");
RDTSC_CLOCK = 0;
for(i = 0; i < 5; i++){
t1 = _rdtsc();
usleep(1000000); //1000 MS
t2 = _rdtsc();
RDTSC_CLOCK += (t2 - t1) / 1000;
}
RDTSC_CLOCK /= 5;
RDTSC_BEGINTICK = _rdtsc();
ShowMessage(" done. (Frequency: %u Mhz)\n", (uint32)(RDTSC_CLOCK/1000) );
}
#endif
/// platform-abstracted tick retrieval
static t_tick tick(void)
{
#if defined(WIN32)
#ifdef DEPRECATED_WINDOWS_SUPPORT
return GetTickCount();
#else
return GetTickCount64();
#endif
#elif defined(ENABLE_RDTSC)
//
return (unsigned int)((_rdtsc() - RDTSC_BEGINTICK) / RDTSC_CLOCK);
//
#elif defined(HAVE_MONOTONIC_CLOCK)
struct timespec tval;
clock_gettime(CLOCK_MONOTONIC, &tval);
return tval.tv_sec * 1000 + tval.tv_nsec / 1000000;
#else
struct timeval tval;
gettimeofday(&tval, NULL);
return tval.tv_sec * 1000 + tval.tv_usec / 1000;
#endif
}
//////////////////////////////////////////////////////////////////////////
#if defined(TICK_CACHE) && TICK_CACHE > 1
//////////////////////////////////////////////////////////////////////////
// tick is cached for TICK_CACHE calls
static t_tick gettick_cache;
static int gettick_count = 1;
unsigned int gettick_nocache(void)
{
gettick_count = TICK_CACHE;
gettick_cache = tick();
return gettick_cache;
}
t_tick gettick(void)
{
return ( --gettick_count == 0 ) ? gettick_nocache() : gettick_cache;
}
//////////////////////////////
#else
//////////////////////////////
// tick doesn't get cached
t_tick gettick_nocache(void)
{
return tick();
}
t_tick gettick(void)
{
return tick();
}
//////////////////////////////////////////////////////////////////////////
#endif
//////////////////////////////////////////////////////////////////////////
/*======================================
* CORE : Timer Heap
*--------------------------------------*/
/// Adds a timer to the timer_heap
static void push_timer_heap(int tid)
{
BHEAP_ENSURE(timer_heap, 1, 256);
BHEAP_PUSH(timer_heap, tid, DIFFTICK_MINTOPCMP, SWAP);
}
/*==========================
* Timer Management
*--------------------------*/
/// Returns a free timer id.
static int acquire_timer(void)
{
int tid;
// select a free timer
if (free_timer_list_pos) {
do {
tid = free_timer_list[--free_timer_list_pos];
} while(tid >= timer_data_num && free_timer_list_pos > 0);
} else
tid = timer_data_num;
// check available space
if( tid >= timer_data_num )
for (tid = timer_data_num; tid < timer_data_max && timer_data[tid].type; tid++);
if (tid >= timer_data_num && tid >= timer_data_max)
{// expand timer array
timer_data_max += 256;
if( timer_data )
RECREATE(timer_data, struct TimerData, timer_data_max);
else
CREATE(timer_data, struct TimerData, timer_data_max);
memset(timer_data + (timer_data_max - 256), 0, sizeof(struct TimerData)*256);
}
if( tid >= timer_data_num )
timer_data_num = tid + 1;
return tid;
}
/// Starts a new timer that is deleted once it expires (single-use).
/// Returns the timer's id.
int add_timer(t_tick tick, TimerFunc func, int id, intptr_t data)
{
int tid;
tid = acquire_timer();
timer_data[tid].tick = tick;
timer_data[tid].func = func;
timer_data[tid].id = id;
timer_data[tid].data = data;
timer_data[tid].type = TIMER_ONCE_AUTODEL;
timer_data[tid].interval = 1000;
push_timer_heap(tid);
return tid;
}
/// Starts a new timer that automatically restarts itself (infinite loop until manually removed).
/// Returns the timer's id, or INVALID_TIMER if it fails.
int add_timer_interval(t_tick tick, TimerFunc func, int id, intptr_t data, int interval)
{
int tid;
if( interval < 1 )
{
ShowError("add_timer_interval: invalid interval (tick=%" PRtf " %p[%s] id=%d data=%" PRIdPTR " diff_tick=%d)\n", tick, func, search_timer_func_list(func), id, data, DIFF_TICK(tick, gettick()));
return INVALID_TIMER;
}
tid = acquire_timer();
timer_data[tid].tick = tick;
timer_data[tid].func = func;
timer_data[tid].id = id;
timer_data[tid].data = data;
timer_data[tid].type = TIMER_INTERVAL;
timer_data[tid].interval = interval;
push_timer_heap(tid);
return tid;
}
/// Retrieves internal timer data
const struct TimerData* get_timer(int tid)
{
return ( tid >= 0 && tid < timer_data_num ) ? &timer_data[tid] : NULL;
}
/// Marks a timer specified by 'id' for immediate deletion once it expires.
/// Param 'func' is used for debug/verification purposes.
/// Returns 0 on success, < 0 on failure.
int delete_timer(int tid, TimerFunc func)
{
if( tid < 0 || tid >= timer_data_num )
{
ShowError("delete_timer error : no such timer %d (%p(%s))\n", tid, func, search_timer_func_list(func));
return -1;
}
if( timer_data[tid].func != func )
{
ShowError("delete_timer error : function mismatch %p(%s) != %p(%s)\n", timer_data[tid].func, search_timer_func_list(timer_data[tid].func), func, search_timer_func_list(func));
return -2;
}
timer_data[tid].func = NULL;
timer_data[tid].type = TIMER_ONCE_AUTODEL;
return 0;
}
/// Adjusts a timer's expiration time.
/// Returns the new tick value, or -1 if it fails.
t_tick addt_tickimer(int tid, t_tick tick)
{
return sett_tickimer(tid, timer_data[tid].tick+tick);
}
/// Modifies a timer's expiration time (an alternative to deleting a timer and starting a new one).
/// Returns the new tick value, or -1 if it fails.
t_tick sett_tickimer(int tid, t_tick tick)
{
size_t i;
// search timer position
ARR_FIND(0, BHEAP_LENGTH(timer_heap), i, BHEAP_DATA(timer_heap)[i] == tid);
if( i == BHEAP_LENGTH(timer_heap) )
{
ShowError("sett_tickimer: no such timer %d (%p(%s))\n", tid, timer_data[tid].func, search_timer_func_list(timer_data[tid].func));
return -1;
}
if( tick == -1 )
tick = 0;// add 1ms to avoid the error value -1
if( timer_data[tid].tick == tick )
return tick;// nothing to do, already in propper position
// pop and push adjusted timer
BHEAP_POPINDEX(timer_heap, i, DIFFTICK_MINTOPCMP, SWAP);
timer_data[tid].tick = tick;
BHEAP_PUSH(timer_heap, tid, DIFFTICK_MINTOPCMP, SWAP);
return tick;
}
/// Executes all expired timers.
/// Returns the value of the smallest non-expired timer (or 1 second if there aren't any).
t_tick do_timer(t_tick tick)
{
t_tick diff = TIMER_MAX_INTERVAL; // return value
// process all timers one by one
while( BHEAP_LENGTH(timer_heap) )
{
int tid = BHEAP_PEEK(timer_heap);// top element in heap (smallest tick)
diff = DIFF_TICK(timer_data[tid].tick, tick);
if( diff > 0 )
break; // no more expired timers to process
// remove timer
BHEAP_POP(timer_heap, DIFFTICK_MINTOPCMP, SWAP);
timer_data[tid].type |= TIMER_REMOVE_HEAP;
if( timer_data[tid].func )
{
if( diff < -1000 )
// timer was delayed for more than 1 second, use current tick instead
timer_data[tid].func(tid, tick, timer_data[tid].id, timer_data[tid].data);
else
timer_data[tid].func(tid, timer_data[tid].tick, timer_data[tid].id, timer_data[tid].data);
}
// in the case the function didn't change anything...
if( timer_data[tid].type & TIMER_REMOVE_HEAP )
{
timer_data[tid].type &= ~TIMER_REMOVE_HEAP;
switch( timer_data[tid].type )
{
default:
case TIMER_ONCE_AUTODEL:
timer_data[tid].type = 0;
if (free_timer_list_pos >= free_timer_list_max) {
free_timer_list_max += 256;
RECREATE(free_timer_list,int,free_timer_list_max);
memset(free_timer_list + (free_timer_list_max - 256), 0, 256 * sizeof(int));
}
free_timer_list[free_timer_list_pos++] = tid;
break;
case TIMER_INTERVAL:
if( DIFF_TICK(timer_data[tid].tick, tick) < -1000 )
timer_data[tid].tick = tick + timer_data[tid].interval;
else
timer_data[tid].tick += timer_data[tid].interval;
push_timer_heap(tid);
break;
}
}
}
return cap_value(diff, TIMER_MIN_INTERVAL, TIMER_MAX_INTERVAL);
}
unsigned long get_uptime(void)
{
return (unsigned long)difftime(time(NULL), start_time);
}
/**
* Converting a timestamp is a srintf according to format
* safefr then strftime as it ensure \0 at end of string
* @param str, pointer to the destination string
* @param size, max length of the string
* @param timestamp, see unix epoch
* @param format, format to convert timestamp on, see strftime format
* @return the string of timestamp
*/
const char* timestamp2string(char* str, size_t size, time_t timestamp, const char* format){
size_t len = strftime(str, size, format, localtime(&timestamp));
memset(str + len, '\0', size - len);
return str;
}
/*
* Split given timein into year, month, day, hour, minute, second
*/
void split_time(int timein, int* year, int* month, int* day, int* hour, int* minute, int *second) {
const int factor_min = 60;
const int factor_hour = factor_min*60;
const int factor_day = factor_hour*24;
const int factor_month = 2629743; // Approx (30.44 days)
const int factor_year = 31556926; // Approx (365.24 days)
*year = timein/factor_year;
timein -= *year*factor_year;
*month = timein/factor_month;
timein -= *month*factor_month;
*day = timein/factor_day;
timein -= *day*factor_day;
*hour = timein/factor_hour;
timein -= *hour*factor_hour;
*minute = timein/factor_min;
timein -= *minute*factor_min;
*second = timein;
*year = max(0,*year);
*month = max(0,*month);
*day = max(0,*day);
*hour = max(0,*hour);
*minute = max(0,*minute);
*second = max(0,*second);
}
/*
* Create a "timestamp" with the given argument
*/
double solve_time(char* modif_p) {
double totaltime = 0;
struct tm then_tm;
time_t now = time(NULL);
time_t then = now;
then_tm = *localtime(&then);
nullpo_retr(0,modif_p);
while (modif_p[0] != '\0') {
int value = atoi(modif_p);
if (value == 0)
modif_p++;
else {
if (modif_p[0] == '-' || modif_p[0] == '+')
modif_p++;
while (modif_p[0] >= '0' && modif_p[0] <= '9')
modif_p++;
if (modif_p[0] == 's') {
then_tm.tm_sec += value;
modif_p++;
} else if (modif_p[0] == 'n') {
then_tm.tm_min += value;
modif_p++;
} else if (modif_p[0] == 'm' && modif_p[1] == 'n') {
then_tm.tm_min += value;
modif_p = modif_p + 2;
} else if (modif_p[0] == 'h') {
then_tm.tm_hour += value;
modif_p++;
} else if (modif_p[0] == 'd' || modif_p[0] == 'j') {
then_tm.tm_mday += value;
modif_p++;
} else if (modif_p[0] == 'm') {
then_tm.tm_mon += value;
modif_p++;
} else if (modif_p[0] == 'y' || modif_p[0] == 'a') {
then_tm.tm_year += value;
modif_p++;
} else if (modif_p[0] != '\0') {
modif_p++;
}
}
}
then = mktime(&then_tm);
totaltime = difftime(then,now);
return totaltime;
}
void timer_init(void)
{
#if defined(ENABLE_RDTSC)
rdtsc_calibrate();
#endif
time(&start_time);
}
void timer_final(void)
{
struct timer_func_list *tfl;
struct timer_func_list *next;
for( tfl=tfl_root; tfl != NULL; tfl = next ) {
next = tfl->next; // copy next pointer
aFree(tfl->name); // free structures
aFree(tfl);
}
if (timer_data) aFree(timer_data);
BHEAP_CLEAR(timer_heap);
if (free_timer_list) aFree(free_timer_list);
}