mirror of
https://github.com/openai/whisper.git
synced 2025-03-30 14:28:27 +00:00
nocaptions -> nospeech to match the paper figure
This commit is contained in:
parent
61989529b7
commit
15ab548263
@ -108,7 +108,7 @@ class DecodingResult:
|
||||
tokens: List[int] = field(default_factory=list)
|
||||
text: str = ""
|
||||
avg_logprob: float = np.nan
|
||||
no_caption_prob: float = np.nan
|
||||
no_speech_prob: float = np.nan
|
||||
temperature: float = np.nan
|
||||
compression_ratio: float = np.nan
|
||||
|
||||
@ -543,9 +543,9 @@ class DecodingTask:
|
||||
suppress_tokens.extend(
|
||||
[self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm]
|
||||
)
|
||||
if self.tokenizer.no_captions is not None:
|
||||
# no-captions probability is collected separately
|
||||
suppress_tokens.append(self.tokenizer.no_captions)
|
||||
if self.tokenizer.no_speech is not None:
|
||||
# no-speech probability is collected separately
|
||||
suppress_tokens.append(self.tokenizer.no_speech)
|
||||
|
||||
return tuple(sorted(set(suppress_tokens)))
|
||||
|
||||
@ -580,15 +580,15 @@ class DecodingTask:
|
||||
assert audio_features.shape[0] == tokens.shape[0]
|
||||
n_batch = tokens.shape[0]
|
||||
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
|
||||
no_caption_probs = [np.nan] * n_batch
|
||||
no_speech_probs = [np.nan] * n_batch
|
||||
|
||||
try:
|
||||
for i in range(self.sample_len):
|
||||
logits = self.inference.logits(tokens, audio_features)
|
||||
|
||||
if i == 0 and self.tokenizer.no_captions is not None: # save no_caption_probs
|
||||
if i == 0 and self.tokenizer.no_speech is not None: # save no_speech_probs
|
||||
probs_at_sot = logits[:, self.sot_index].float().softmax(dim=-1)
|
||||
no_caption_probs = probs_at_sot[:, self.tokenizer.no_captions].tolist()
|
||||
no_speech_probs = probs_at_sot[:, self.tokenizer.no_speech].tolist()
|
||||
|
||||
# now we need to consider the logits at the last token only
|
||||
logits = logits[:, -1]
|
||||
@ -605,7 +605,7 @@ class DecodingTask:
|
||||
finally:
|
||||
self.inference.cleanup_caching()
|
||||
|
||||
return tokens, sum_logprobs, no_caption_probs
|
||||
return tokens, sum_logprobs, no_speech_probs
|
||||
|
||||
@torch.no_grad()
|
||||
def run(self, mel: Tensor) -> List[DecodingResult]:
|
||||
@ -629,12 +629,12 @@ class DecodingTask:
|
||||
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
|
||||
|
||||
# call the main sampling loop
|
||||
tokens, sum_logprobs, no_caption_probs = self._main_loop(audio_features, tokens)
|
||||
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
|
||||
|
||||
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
|
||||
audio_features = audio_features[:: self.n_group]
|
||||
no_caption_probs = no_caption_probs[:: self.n_group]
|
||||
assert audio_features.shape[0] == len(no_caption_probs) == n_audio
|
||||
no_speech_probs = no_speech_probs[:: self.n_group]
|
||||
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
|
||||
|
||||
tokens = tokens.reshape(n_audio, self.n_group, -1)
|
||||
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
|
||||
@ -653,7 +653,7 @@ class DecodingTask:
|
||||
sum_logprobs: List[float] = [lp[i] for i, lp in zip(selected, sum_logprobs)]
|
||||
avg_logprobs: List[float] = [lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)]
|
||||
|
||||
fields = (texts, languages, tokens, audio_features, avg_logprobs, no_caption_probs)
|
||||
fields = (texts, languages, tokens, audio_features, avg_logprobs, no_speech_probs)
|
||||
if len(set(map(len, fields))) != 1:
|
||||
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}")
|
||||
|
||||
@ -664,11 +664,11 @@ class DecodingTask:
|
||||
tokens=tokens,
|
||||
text=text,
|
||||
avg_logprob=avg_logprob,
|
||||
no_caption_prob=no_caption_prob,
|
||||
no_speech_prob=no_speech_prob,
|
||||
temperature=self.options.temperature,
|
||||
compression_ratio=compression_ratio(text),
|
||||
)
|
||||
for text, language, tokens, features, avg_logprob, no_caption_prob in zip(*fields)
|
||||
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(*fields)
|
||||
]
|
||||
|
||||
|
||||
|
@ -178,8 +178,8 @@ class Tokenizer:
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def no_captions(self) -> int:
|
||||
return self._get_single_token_id("<|nocaptions|>")
|
||||
def no_speech(self) -> int:
|
||||
return self._get_single_token_id("<|nospeech|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
@ -283,7 +283,7 @@ def build_tokenizer(name: str = "gpt2"):
|
||||
"<|transcribe|>",
|
||||
"<|startoflm|>",
|
||||
"<|startofprev|>",
|
||||
"<|nocaptions|>",
|
||||
"<|nospeech|>",
|
||||
"<|notimestamps|>",
|
||||
]
|
||||
|
||||
|
@ -23,7 +23,7 @@ def transcribe(
|
||||
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
||||
compression_ratio_threshold: Optional[float] = 2.4,
|
||||
logprob_threshold: Optional[float] = -1.0,
|
||||
no_captions_threshold: Optional[float] = 0.6,
|
||||
no_speech_threshold: Optional[float] = 0.6,
|
||||
**decode_options,
|
||||
):
|
||||
"""
|
||||
@ -50,8 +50,8 @@ def transcribe(
|
||||
logprob_threshold: float
|
||||
If the average log probability over sampled tokens is below this value, treat as failed
|
||||
|
||||
no_captions_threshold: float
|
||||
If the no_captions probability is higher than this value AND the average log probability
|
||||
no_speech_threshold: float
|
||||
If the no_speech probability is higher than this value AND the average log probability
|
||||
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
||||
|
||||
decode_options: dict
|
||||
@ -148,7 +148,7 @@ def transcribe(
|
||||
"temperature": result.temperature,
|
||||
"avg_logprob": result.avg_logprob,
|
||||
"compression_ratio": result.compression_ratio,
|
||||
"no_caption_prob": result.no_caption_prob,
|
||||
"no_speech_prob": result.no_speech_prob,
|
||||
}
|
||||
)
|
||||
if verbose:
|
||||
@ -163,11 +163,11 @@ def transcribe(
|
||||
result = decode_with_fallback(segment)[0]
|
||||
tokens = torch.tensor(result.tokens)
|
||||
|
||||
if no_captions_threshold is not None:
|
||||
if no_speech_threshold is not None:
|
||||
# no voice activity check
|
||||
should_skip = result.no_caption_prob > no_captions_threshold
|
||||
should_skip = result.no_speech_prob > no_speech_threshold
|
||||
if logprob_threshold is not None and result.avg_logprob > logprob_threshold:
|
||||
# don't skip if the logprob is high enough, despite the no_captions_prob
|
||||
# don't skip if the logprob is high enough, despite the no_speech_prob
|
||||
should_skip = False
|
||||
|
||||
if should_skip:
|
||||
@ -249,7 +249,7 @@ def cli():
|
||||
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
|
||||
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
||||
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
||||
parser.add_argument("--no_caption_threshold", type=optional_float, default=0.6, help="if the probability of the <|nocaptions|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
||||
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
||||
|
||||
args = parser.parse_args().__dict__
|
||||
model_name: str = args.pop("model")
|
||||
@ -261,12 +261,8 @@ def cli():
|
||||
warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
|
||||
args["language"] = "en"
|
||||
|
||||
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
|
||||
compression_ratio_threshold = args.pop("compression_ratio_threshold")
|
||||
logprob_threshold = args.pop("logprob_threshold")
|
||||
no_caption_threshold = args.pop("no_caption_threshold")
|
||||
|
||||
temperature = args.pop("temperature")
|
||||
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
|
||||
if temperature_increment_on_fallback is not None:
|
||||
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
|
||||
else:
|
||||
@ -276,15 +272,7 @@ def cli():
|
||||
model = load_model(model_name, device=device)
|
||||
|
||||
for audio_path in args.pop("audio"):
|
||||
result = transcribe(
|
||||
model,
|
||||
audio_path,
|
||||
temperature=temperature,
|
||||
compression_ratio_threshold=compression_ratio_threshold,
|
||||
logprob_threshold=logprob_threshold,
|
||||
no_captions_threshold=no_caption_threshold,
|
||||
**args,
|
||||
)
|
||||
result = transcribe(model, audio_path, temperature=temperature, **args)
|
||||
|
||||
audio_basename = os.path.basename(audio_path)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user