Support longer audio files reducing memory usage with chunking

This commit is contained in:
Gustavo Garcia 2024-07-01 19:46:15 +02:00
parent ba3f3cd54b
commit 20e323895d
3 changed files with 359 additions and 339 deletions

View File

@ -7,13 +7,13 @@ from whisper.audio import SAMPLE_RATE, load_audio, log_mel_spectrogram
def test_audio():
audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac")
audio = load_audio(audio_path)
audio = next(load_audio(audio_path))
assert audio.ndim == 1
assert SAMPLE_RATE * 10 < audio.shape[0] < SAMPLE_RATE * 12
assert 0 < audio.std() < 1
mel_from_audio = log_mel_spectrogram(audio)
mel_from_file = log_mel_spectrogram(audio_path)
mel_from_audio = next(log_mel_spectrogram(audio))
mel_from_file = next(log_mel_spectrogram(audio_path))
assert np.allclose(mel_from_audio, mel_from_file)
assert mel_from_audio.max() - mel_from_audio.min() <= 2.0

View File

@ -1,7 +1,8 @@
import os
import subprocess
from functools import lru_cache
from subprocess import CalledProcessError, run
from typing import Optional, Union
from typing import Generator, Optional, Union
import numpy as np
import torch
@ -21,6 +22,7 @@ N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
MAX_CHUNK_DURATION = 2 * 60 * 60 # 2 hour maximum chunk duration
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
@ -55,11 +57,15 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
]
# fmt: on
try:
out = run(cmd, capture_output=True, check=True).stdout
except CalledProcessError as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
while True:
out = process.stdout.read(MAX_CHUNK_DURATION * sr * 2)
if not out:
break
yield np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
except Exception as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
@ -108,7 +114,7 @@ def mel_filters(device, n_mels: int) -> torch.Tensor:
def log_mel_spectrogram(
audio: Union[str, np.ndarray, torch.Tensor],
audio: Union[str, np.ndarray, torch.Tensor, Generator[np.ndarray, None, None]],
n_mels: int = 80,
padding: int = 0,
device: Optional[Union[str, torch.device]] = None,
@ -135,13 +141,26 @@ def log_mel_spectrogram(
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
elif isinstance(audio, np.ndarray):
audio = [audio]
elif isinstance(audio, torch.Tensor):
audio = [audio]
for chunk in audio:
if not isinstance(chunk, torch.Tensor):
chunk = torch.from_numpy(chunk)
if device is not None:
audio = audio.to(device)
chunk = chunk.to(device)
yield _log_mel_spectrogram(chunk, n_mels, padding)
def _log_mel_spectrogram(
audio: torch.Tensor,
n_mels: int = 80,
padding: int = 0,
):
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)

View File

@ -2,7 +2,7 @@ import argparse
import os
import traceback
import warnings
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
from typing import TYPE_CHECKING, Generator, List, Optional, Tuple, Union
import numpy as np
import torch
@ -37,7 +37,7 @@ if TYPE_CHECKING:
def transcribe(
model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor],
audio: Union[str, np.ndarray, torch.Tensor, Generator[np.ndarray, None, None]],
*,
verbose: Optional[bool] = None,
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
@ -129,8 +129,13 @@ def transcribe(
if dtype == torch.float32:
decode_options["fp16"] = False
all_tokens = []
all_segments = []
punctuation = "\"'“¿([{-\"'.。,!?::”)]}、"
# Pad 30-seconds of silence to the input audio, for slicing
mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
mels = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES)
for mel in mels:
content_frames = mel.shape[-1] - N_FRAMES
content_duration = float(content_frames * HOP_LENGTH / SAMPLE_RATE)
@ -170,8 +175,6 @@ def transcribe(
seek_points.append(content_frames)
seek_clips: List[Tuple[int, int]] = list(zip(seek_points[::2], seek_points[1::2]))
punctuation = "\"'“¿([{-\"'.。,!?::”)]}、"
if word_timestamps and task == "translate":
warnings.warn("Word-level timestamps on translations may not be reliable.")
@ -223,8 +226,6 @@ def transcribe(
time_precision = (
input_stride * HOP_LENGTH / SAMPLE_RATE
) # time per output token: 0.02 (seconds)
all_tokens = []
all_segments = []
prompt_reset_since = 0
if initial_prompt is not None: