mirror of
https://github.com/openai/whisper.git
synced 2025-11-23 22:15:58 +00:00
add mandarin alias
This commit is contained in:
parent
72fc6ef0ee
commit
435d0bebd0
@ -69,9 +69,9 @@ There are five model sizes, four with English-only versions, offering speed and
|
||||
|
||||
The `.en` models for English-only applications tend to perform better, especially for the `tiny.en` and `base.en` models. We observed that the difference becomes less significant for the `small.en` and `medium.en` models.
|
||||
|
||||
Whisper's performance varies widely depending on the language. The figure below shows a WER (Word Error Rate) breakdown by languages of the Fleurs dataset using the `large-v2` model (The smaller the numbers, the better the performance). Additional WER scores corresponding to the other models and datasets can be found in Appendix D.1, D.2, and D.4. Meanwhile, more BLEU (Bilingual Evaluation Understudy) scores can be found in Appendix D.3. Both are found in [the paper](https://arxiv.org/abs/2212.04356).
|
||||
Whisper's performance varies widely depending on the language. The figure below shows a performance breakdown of `large-v3` and `large-v2` models by language, using WERs (word error rates) or CER (character error rates, shown in *Italic*) evaluated on the Common Voice 15 and Fleurs datasets. Additional WER/CER metrics corresponding to the other models and datasets can be found in Appendix D.1, D.2, and D.4 of [the paper](https://arxiv.org/abs/2212.04356), as well as the BLEU (Bilingual Evaluation Understudy) scores for translation in Appendix D.3.
|
||||
|
||||

|
||||

|
||||
|
||||
|
||||
|
||||
|
||||
@ -130,6 +130,7 @@ TO_LANGUAGE_CODE = {
|
||||
"moldovan": "ro",
|
||||
"sinhalese": "si",
|
||||
"castilian": "es",
|
||||
"mandarin": "zh",
|
||||
}
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user