Merge b76dcf36630a5bd7bbc1851924e23e6128db693f into 517a43ecd132a2089d85f4ebc044728a71d49f6e

This commit is contained in:
Khalil Adib 2025-01-09 15:40:58 +01:00 committed by GitHub
commit 546c82147a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 136 additions and 15 deletions

78
examples/test_prob.py Normal file
View File

@ -0,0 +1,78 @@
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).resolve().parents[1]))
import torch
import whisper
import argparse
import colorsys
from whisper.utils import exact_div
from typing import List
from whisper.tokenizer import get_tokenizer
from colorama import init, Style
# hard-coded audio hyperparameters
SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
def load_audio_from_source(audio_source):
audio = whisper.load_audio(audio_source)
audio = whisper.pad_or_trim(audio)
return audio
def decode_audio(model, audio, language="en", f16=True):
dtype = torch.float16 if f16 else torch.float32
# mel = whisper.log_mel_spectrogram(audio).to(model.device)
mel = whisper.log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES).to(model.device)
mel_segment =whisper.pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
print('Decoding audio') # decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel_segment, options)
tokenizer = get_tokenizer(multilingual=model.is_multilingual, language=language, task=options.task)
text_tokens = [tokenizer.decode([t]) for t in result.tokens]
return text_tokens, result.token_probs
def get_colored_text(text_tokens: List[int], token_probs: List[float]):
init(autoreset=False) # Initialize colorama with autoreset=True to reset colors after each print
output_text = ""
for i, (token, prob) in enumerate(zip(text_tokens, token_probs)):
# Interpolate between red and green in the HSV color space
r, g, b = colorsys.hsv_to_rgb(prob * (1/3), 1, 1)
r, g, b = int(r * 255), int(g * 255), int(b * 255)
color_code = f"\033[38;2;{r};{g};{b}m"
colored_token = f"{color_code}{Style.BRIGHT}{str(token)}{Style.RESET_ALL}"
output_text += colored_token
return output_text
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--audio', type=str, help='the path of the audio file')
parser.add_argument('--model', type=str, default="large", help='The version of the model to be used')
args = parser.parse_args()
model = args.model
audio = args.audio
# Load model
model = whisper.load_model(model)
audio = load_audio_from_source(audio_source=audio)
text, proba = decode_audio(model=model, audio=audio)
print(get_colored_text(text, proba))

View File

@ -11,7 +11,7 @@ from tqdm import tqdm
from .audio import load_audio, log_mel_spectrogram, pad_or_trim
from .decoding import DecodingOptions, DecodingResult, decode, detect_language
from .model import ModelDimensions, Whisper
from .transcribe import transcribe
from .transcribe import transcribe, stt
from .version import __version__
_MODELS = {

View File

@ -120,6 +120,7 @@ class DecodingResult:
language: str
language_probs: Optional[Dict[str, float]] = None
tokens: List[int] = field(default_factory=list)
token_probs: List[float] = field(default_factory=list)
text: str = ""
avg_logprob: float = np.nan
no_speech_prob: float = np.nan
@ -218,7 +219,7 @@ class TokenDecoder:
"""Initialize any stateful variables for decoding a new sequence"""
def update(
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor, token_probs: Tensor
) -> Tuple[Tensor, bool]:
"""Specify how to select the next token, based on the current trace and logits
@ -245,7 +246,7 @@ class TokenDecoder:
raise NotImplementedError
def finalize(
self, tokens: Tensor, sum_logprobs: Tensor
self, tokens: Tensor, sum_logprobs: Tensor, token_probs: Tensor
) -> Tuple[Sequence[Sequence[Tensor]], List[List[float]]]:
"""Finalize search and return the final candidate sequences
@ -275,7 +276,7 @@ class GreedyDecoder(TokenDecoder):
self.eot = eot
def update(
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor
self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor, token_probs: Tensor
) -> Tuple[Tensor, bool]:
if self.temperature == 0:
next_tokens = logits.argmax(dim=-1)
@ -283,19 +284,24 @@ class GreedyDecoder(TokenDecoder):
next_tokens = Categorical(logits=logits / self.temperature).sample()
logprobs = F.log_softmax(logits.float(), dim=-1)
probs = torch.exp(logprobs)
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), next_tokens]
sum_logprobs += current_logprobs * (tokens[:, -1] != self.eot)
next_tokens[tokens[:, -1] == self.eot] = self.eot
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1)
completed = (tokens[:, -1] == self.eot).all()
return tokens, completed
current_token_probs = probs[torch.arange(probs.shape[0]), next_tokens]
token_probs = torch.cat([token_probs, current_token_probs[:, None]], dim=-1)
def finalize(self, tokens: Tensor, sum_logprobs: Tensor):
completed = (tokens[:, -1] == self.eot).all()
return tokens, completed, token_probs
def finalize(self, tokens: Tensor, sum_logprobs: Tensor, token_probs: Tensor):
# make sure each sequence has at least one EOT token at the end
tokens = F.pad(tokens, (0, 1), value=self.eot)
return tokens, sum_logprobs.tolist()
token_probs = F.pad(token_probs, (0, 1), value=0)
return tokens, sum_logprobs.tolist(), token_probs.tolist()
class BeamSearchDecoder(TokenDecoder):
@ -381,7 +387,7 @@ class BeamSearchDecoder(TokenDecoder):
)
return tokens, completed
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor):
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor, token_probs: Tensor):
# collect all finished sequences, including patience, and add unfinished ones if not enough
sum_logprobs = sum_logprobs.cpu()
for i, sequences in enumerate(self.finished_sequences):
@ -682,6 +688,7 @@ class DecodingTask:
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
no_speech_probs = [np.nan] * n_batch
token_probs = torch.zeros_like(tokens).float()
try:
for i in range(self.sample_len):
logits = self.inference.logits(tokens, audio_features)
@ -700,14 +707,14 @@ class DecodingTask:
logit_filter.apply(logits, tokens)
# expand the tokens tensor with the selected next tokens
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs)
tokens, completed, token_probs = self.decoder.update(tokens, logits, sum_logprobs, token_probs)
if completed or tokens.shape[-1] > self.n_ctx:
break
finally:
self.inference.cleanup_caching()
return tokens, sum_logprobs, no_speech_probs
return tokens, sum_logprobs, no_speech_probs, token_probs
@torch.no_grad()
def run(self, mel: Tensor) -> List[DecodingResult]:
@ -734,7 +741,7 @@ class DecodingTask:
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
# call the main sampling loop
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
tokens, sum_logprobs, no_speech_probs, token_probs = self._main_loop(audio_features, tokens)
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
audio_features = audio_features[:: self.n_group]
@ -745,7 +752,7 @@ class DecodingTask:
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
# get the final candidates for each group, and slice between the first sampled token and EOT
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
tokens, sum_logprobs, token_probs = self.decoder.finalize(tokens, sum_logprobs, token_probs)
tokens: List[List[Tensor]] = [
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s]
for s in tokens
@ -768,6 +775,7 @@ class DecodingTask:
audio_features,
avg_logprobs,
no_speech_probs,
token_probs
)
if len(set(map(len, fields))) != 1:
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}")
@ -782,8 +790,9 @@ class DecodingTask:
no_speech_prob=no_speech_prob,
temperature=self.options.temperature,
compression_ratio=compression_ratio(text),
token_probs=token_probs[-len(tokens):]
)
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(
for text, language, tokens, features, avg_logprob, no_speech_prob, token_probs in zip(
*fields
)
]

View File

@ -17,7 +17,7 @@ from .audio import (
log_mel_spectrogram,
pad_or_trim,
)
from .decoding import DecodingOptions, DecodingResult
from .decoding import DecodingOptions, DecodingResult, decode
from .timing import add_word_timestamps
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
from .utils import (
@ -514,6 +514,40 @@ def transcribe(
)
def stt(model: "Whisper",
audio: Union[str, np.ndarray, torch.Tensor],
language : str = "en",
f16: bool =True):
"""
Transcribe an audio file using Whisper while getting the probability for each token
Parameters
----------
model: Whisper
The Whisper model instance
audio: Union[str, np.ndarray, torch.Tensor]
The path to the audio file to open, or the audio waveform
language: string
language used in the audio
f16: bool
check if using torch.float16 otherwise use torch.float32
"""
dtype = torch.float16 if f16 else torch.float32
audio = pad_or_trim(audio)
mel = log_mel_spectrogram(audio, model.dims.n_mels, padding=N_SAMPLES).to(model.device)
mel_segment =pad_or_trim(mel, N_FRAMES).to(model.device).to(dtype)
options = DecodingOptions()
result = decode(model, mel_segment, options)
tokenizer = get_tokenizer(multilingual=model.is_multilingual, language=language, task=options.task)
text = [tokenizer.decode([t]) for t in result.tokens]
output = [ [text, prob] for text, prob in zip(text, result.token_probs) ]
return output
def cli():
from . import available_models