diff --git a/Dockerfile.hpu b/Dockerfile.hpu index 15bfc5a..a12e5fb 100644 --- a/Dockerfile.hpu +++ b/Dockerfile.hpu @@ -23,13 +23,12 @@ RUN mkdir -p /usr/local/bin/ffmpeg && \ cp -a ffmpeg-*-static/ffprobe /usr/bin/ffprobe && \ rm -rf /usr/local/bin/ffmpeg -# Add Whisper repo contents -ADD . /root/whisper -WORKDIR /root/whisper +COPY . /workspace/whisper +WORKDIR /workspace/whisper # Copy HPU requirements -COPY requirements_hpu.txt /root/whisper/requirements.txt +COPY requirements_hpu.txt /workspace/requirements_hpu.txt # Install Python packages RUN pip install --upgrade pip \ - && pip install -r requirements.txt + && pip install -r requirements_hpu.txt diff --git a/README.md b/README.md index 20b4a96..47c94e7 100644 --- a/README.md +++ b/README.md @@ -93,6 +93,10 @@ Adding `--task translate` will translate the speech into English: whisper japanese.wav --language Japanese --task translate +The following command will transcribe speech in audio files, using the Intel® Gaudi® HPU (`--device hpu` option): + + whisper audio.flac audio.mp3 audio.wav --model turbo --device hpu + Run the following to view all available options: whisper --help @@ -148,23 +152,40 @@ print(result.text) docker build -t whisper_hpu:latest -f Dockerfile.hpu . ``` -In the `Dockerfile.hpu`, we use the `vault.habana.ai/gaudi-docker/1.17.0/ubuntu22.04/habanalabs/pytorch-installer-2.3.1:latest` base image, make sure to replace it with the appropriate version for your environment if needed. +In the `Dockerfile.hpu`, we use the `vault.habana.ai/gaudi-docker/1.18.0/ubuntu22.04/habanalabs/pytorch-installer-2.3.1:latest` base image, make sure to replace it with the appropriate version for your environment if needed. See the [PyTorch Docker Images for the Intel® Gaudi® Accelerator](https://developer.habana.ai/catalog/pytorch-container/) for more information. ### Run the Container ```bash -docker run -it --runtime=habana -v /path/to/your/whisper:/root/whisper whisper_hpu:latest /bin/bash +docker run -it --runtime=habana whisper_hpu:latest ``` -Make sure to replace `/path/to/your/whisper` with the path to the Whisper repository on your local machine. +Using a mapping volume (`-v`) is optional, but it allows you to access the Whisper repository from within the container. +You can make this by adding `-v /path/to/your/whisper:/workspace/whisper` to the `docker run` command. +If you decide to use the mapping make sure to replace `/path/to/your/whisper` with the path to the Whisper repository on your local machine. ### Command-line usage with Intel® Gaudi® hpu -To run the `whisper` command with Intel® Gaudi® hpu, you can use the `--device hpu` option: +To run the `transcribe` process with Intel® Gaudi® HPU, you can use the `--device hpu` option: - python3 -m whisper.transcribe audio.flac audio.mp3 audio.wav --model turbo --device hpu +```bash +python3 -m whisper.transcribe audio_file.wav --model turbo --device hpu +``` +* Note: Change `audio_file.wav` to the path of the audio file you want to transcribe. (Example file: https://www.kaggle.com/datasets/pavanelisetty/sample-audio-files-for-speech-recognition?resource=download) + +To run the `transcribe` tests with Intel® Gaudi® HPU, make sure to install the `pytest` package: + +```bash +pip install pytest +``` + +and run the following command: + +```bash +PYTHONPATH=. pytest -s tests/test_transcribe.py::test_transcribe_hpu +``` ### Python usage with Intel® Gaudi® hpu