Added error handling to log_mel_spectrogram and improved documentation

- Added try-except block in log_mel_spectrogram to catch and print errors.
- Enhanced docstrings for load_audio, pad_or_trim, mel_filters, and log_mel_spectrogram functions.
This commit is contained in:
Ashish Patel 2024-07-29 17:22:23 +05:30 committed by GitHub
parent ba3f3cd54b
commit 69913d1bd6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -24,24 +24,20 @@ TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audi
def load_audio(file: str, sr: int = SAMPLE_RATE):
"""
Open an audio file and read as mono waveform, resampling as necessary
Open an audio file and read as mono waveform, resampling as necessary.
Parameters
----------
file: str
The audio file to open
The audio file to open.
sr: int
The sample rate to resample the audio if necessary
The sample rate to resample the audio if necessary.
Returns
-------
A NumPy array containing the audio waveform, in float32 dtype.
"""
# This launches a subprocess to decode audio while down-mixing
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
# fmt: off
cmd = [
"ffmpeg",
"-nostdin",
@ -53,7 +49,6 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
"-ar", str(sr),
"-"
]
# fmt: on
try:
out = run(cmd, capture_output=True, check=True).stdout
except CalledProcessError as e:
@ -65,6 +60,21 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
Parameters
----------
array: Union[np.ndarray, torch.Tensor]
The audio array to pad or trim.
length: int
The desired length of the audio array.
axis: int
The axis along which to pad or trim.
Returns
-------
A padded or trimmed array.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
@ -91,14 +101,20 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
@lru_cache(maxsize=None)
def mel_filters(device, n_mels: int) -> torch.Tensor:
"""
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
Allows decoupling librosa dependency; saved using:
Load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
np.savez_compressed(
"mel_filters.npz",
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
)
Parameters
----------
device: torch.device
The device to load the filters on.
n_mels: int
The number of Mel-frequency filters.
Returns
-------
torch.Tensor
The Mel filterbank matrix.
"""
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
@ -114,44 +130,48 @@ def log_mel_spectrogram(
device: Optional[Union[str, torch.device]] = None,
):
"""
Compute the log-Mel spectrogram of
Compute the log-Mel spectrogram of the audio.
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
audio: Union[str, np.ndarray, torch.Tensor]
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz.
n_mels: int
The number of Mel-frequency filters, only 80 is supported
The number of Mel-frequency filters.
padding: int
Number of zero samples to pad to the right
Number of zero samples to pad to the right.
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
If given, the audio tensor is moved to this device before STFT.
Returns
-------
torch.Tensor, shape = (80, n_frames)
A Tensor that contains the Mel spectrogram
torch.Tensor
A Tensor that contains the Mel spectrogram.
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
try:
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
if device is not None:
audio = audio.to(device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
if device is not None:
audio = audio.to(device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
filters = mel_filters(audio.device, n_mels)
mel_spec = filters @ magnitudes
filters = mel_filters(audio.device, n_mels)
mel_spec = filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec
except Exception as e:
print(f"Error computing log-mel spectrogram: {e}")
return None