mirror of
https://github.com/openai/whisper.git
synced 2025-11-24 14:35:57 +00:00
Added error handling to log_mel_spectrogram and improved documentation
- Added try-except block in log_mel_spectrogram to catch and print errors. - Enhanced docstrings for load_audio, pad_or_trim, mel_filters, and log_mel_spectrogram functions.
This commit is contained in:
parent
ba3f3cd54b
commit
69913d1bd6
@ -24,24 +24,20 @@ TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audi
|
|||||||
|
|
||||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||||
"""
|
"""
|
||||||
Open an audio file and read as mono waveform, resampling as necessary
|
Open an audio file and read as mono waveform, resampling as necessary.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
file: str
|
file: str
|
||||||
The audio file to open
|
The audio file to open.
|
||||||
|
|
||||||
sr: int
|
sr: int
|
||||||
The sample rate to resample the audio if necessary
|
The sample rate to resample the audio if necessary.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
A NumPy array containing the audio waveform, in float32 dtype.
|
A NumPy array containing the audio waveform, in float32 dtype.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# This launches a subprocess to decode audio while down-mixing
|
|
||||||
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
|
||||||
# fmt: off
|
|
||||||
cmd = [
|
cmd = [
|
||||||
"ffmpeg",
|
"ffmpeg",
|
||||||
"-nostdin",
|
"-nostdin",
|
||||||
@ -53,7 +49,6 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
|
|||||||
"-ar", str(sr),
|
"-ar", str(sr),
|
||||||
"-"
|
"-"
|
||||||
]
|
]
|
||||||
# fmt: on
|
|
||||||
try:
|
try:
|
||||||
out = run(cmd, capture_output=True, check=True).stdout
|
out = run(cmd, capture_output=True, check=True).stdout
|
||||||
except CalledProcessError as e:
|
except CalledProcessError as e:
|
||||||
@ -65,6 +60,21 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
|
|||||||
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||||
"""
|
"""
|
||||||
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
array: Union[np.ndarray, torch.Tensor]
|
||||||
|
The audio array to pad or trim.
|
||||||
|
|
||||||
|
length: int
|
||||||
|
The desired length of the audio array.
|
||||||
|
|
||||||
|
axis: int
|
||||||
|
The axis along which to pad or trim.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
A padded or trimmed array.
|
||||||
"""
|
"""
|
||||||
if torch.is_tensor(array):
|
if torch.is_tensor(array):
|
||||||
if array.shape[axis] > length:
|
if array.shape[axis] > length:
|
||||||
@ -91,14 +101,20 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
|||||||
@lru_cache(maxsize=None)
|
@lru_cache(maxsize=None)
|
||||||
def mel_filters(device, n_mels: int) -> torch.Tensor:
|
def mel_filters(device, n_mels: int) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
Load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||||
Allows decoupling librosa dependency; saved using:
|
|
||||||
|
|
||||||
np.savez_compressed(
|
Parameters
|
||||||
"mel_filters.npz",
|
----------
|
||||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
device: torch.device
|
||||||
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
|
The device to load the filters on.
|
||||||
)
|
|
||||||
|
n_mels: int
|
||||||
|
The number of Mel-frequency filters.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
torch.Tensor
|
||||||
|
The Mel filterbank matrix.
|
||||||
"""
|
"""
|
||||||
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
||||||
|
|
||||||
@ -114,27 +130,28 @@ def log_mel_spectrogram(
|
|||||||
device: Optional[Union[str, torch.device]] = None,
|
device: Optional[Union[str, torch.device]] = None,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Compute the log-Mel spectrogram of
|
Compute the log-Mel spectrogram of the audio.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
audio: Union[str, np.ndarray, torch.Tensor]
|
||||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz.
|
||||||
|
|
||||||
n_mels: int
|
n_mels: int
|
||||||
The number of Mel-frequency filters, only 80 is supported
|
The number of Mel-frequency filters.
|
||||||
|
|
||||||
padding: int
|
padding: int
|
||||||
Number of zero samples to pad to the right
|
Number of zero samples to pad to the right.
|
||||||
|
|
||||||
device: Optional[Union[str, torch.device]]
|
device: Optional[Union[str, torch.device]]
|
||||||
If given, the audio tensor is moved to this device before STFT
|
If given, the audio tensor is moved to this device before STFT.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
-------
|
-------
|
||||||
torch.Tensor, shape = (80, n_frames)
|
torch.Tensor
|
||||||
A Tensor that contains the Mel spectrogram
|
A Tensor that contains the Mel spectrogram.
|
||||||
"""
|
"""
|
||||||
|
try:
|
||||||
if not torch.is_tensor(audio):
|
if not torch.is_tensor(audio):
|
||||||
if isinstance(audio, str):
|
if isinstance(audio, str):
|
||||||
audio = load_audio(audio)
|
audio = load_audio(audio)
|
||||||
@ -155,3 +172,6 @@ def log_mel_spectrogram(
|
|||||||
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||||||
log_spec = (log_spec + 4.0) / 4.0
|
log_spec = (log_spec + 4.0) / 4.0
|
||||||
return log_spec
|
return log_spec
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error computing log-mel spectrogram: {e}")
|
||||||
|
return None
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user