mirror of
https://github.com/openai/whisper.git
synced 2025-11-24 14:35:57 +00:00
Added error handling to log_mel_spectrogram and improved documentation
- Added try-except block in log_mel_spectrogram to catch and print errors. - Enhanced docstrings for load_audio, pad_or_trim, mel_filters, and log_mel_spectrogram functions.
This commit is contained in:
parent
ba3f3cd54b
commit
69913d1bd6
@ -24,24 +24,20 @@ TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audi
|
||||
|
||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
"""
|
||||
Open an audio file and read as mono waveform, resampling as necessary
|
||||
Open an audio file and read as mono waveform, resampling as necessary.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file: str
|
||||
The audio file to open
|
||||
The audio file to open.
|
||||
|
||||
sr: int
|
||||
The sample rate to resample the audio if necessary
|
||||
The sample rate to resample the audio if necessary.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A NumPy array containing the audio waveform, in float32 dtype.
|
||||
"""
|
||||
|
||||
# This launches a subprocess to decode audio while down-mixing
|
||||
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||||
# fmt: off
|
||||
cmd = [
|
||||
"ffmpeg",
|
||||
"-nostdin",
|
||||
@ -53,7 +49,6 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
"-ar", str(sr),
|
||||
"-"
|
||||
]
|
||||
# fmt: on
|
||||
try:
|
||||
out = run(cmd, capture_output=True, check=True).stdout
|
||||
except CalledProcessError as e:
|
||||
@ -65,6 +60,21 @@ def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||
"""
|
||||
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
array: Union[np.ndarray, torch.Tensor]
|
||||
The audio array to pad or trim.
|
||||
|
||||
length: int
|
||||
The desired length of the audio array.
|
||||
|
||||
axis: int
|
||||
The axis along which to pad or trim.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A padded or trimmed array.
|
||||
"""
|
||||
if torch.is_tensor(array):
|
||||
if array.shape[axis] > length:
|
||||
@ -91,14 +101,20 @@ def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||
@lru_cache(maxsize=None)
|
||||
def mel_filters(device, n_mels: int) -> torch.Tensor:
|
||||
"""
|
||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||
Allows decoupling librosa dependency; saved using:
|
||||
Load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||
|
||||
np.savez_compressed(
|
||||
"mel_filters.npz",
|
||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
||||
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
|
||||
)
|
||||
Parameters
|
||||
----------
|
||||
device: torch.device
|
||||
The device to load the filters on.
|
||||
|
||||
n_mels: int
|
||||
The number of Mel-frequency filters.
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor
|
||||
The Mel filterbank matrix.
|
||||
"""
|
||||
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
||||
|
||||
@ -114,27 +130,28 @@ def log_mel_spectrogram(
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
):
|
||||
"""
|
||||
Compute the log-Mel spectrogram of
|
||||
Compute the log-Mel spectrogram of the audio.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
||||
audio: Union[str, np.ndarray, torch.Tensor]
|
||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz.
|
||||
|
||||
n_mels: int
|
||||
The number of Mel-frequency filters, only 80 is supported
|
||||
The number of Mel-frequency filters.
|
||||
|
||||
padding: int
|
||||
Number of zero samples to pad to the right
|
||||
Number of zero samples to pad to the right.
|
||||
|
||||
device: Optional[Union[str, torch.device]]
|
||||
If given, the audio tensor is moved to this device before STFT
|
||||
If given, the audio tensor is moved to this device before STFT.
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor, shape = (80, n_frames)
|
||||
A Tensor that contains the Mel spectrogram
|
||||
torch.Tensor
|
||||
A Tensor that contains the Mel spectrogram.
|
||||
"""
|
||||
try:
|
||||
if not torch.is_tensor(audio):
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
@ -155,3 +172,6 @@ def log_mel_spectrogram(
|
||||
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||||
log_spec = (log_spec + 4.0) / 4.0
|
||||
return log_spec
|
||||
except Exception as e:
|
||||
print(f"Error computing log-mel spectrogram: {e}")
|
||||
return None
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user